MMDO0 |

I X201 |
ya .

e

M
st

MZUDNZOUNZZ TR
omor
IXDODX D

=1M

MH-I.;.'F . ‘ﬁhuil.

Ti

T R L
L LR L)

S _._} = .._1 s . s e e — RS SR = o e el e A w L '
B s e

R R R .

QueenShol

PROGRAMMING SERIES

11111

......

ESEE

~ STEP-BY-STEP
PROGRAMMING

S

THE DK SCREEN-SHOT PROGRAMMING SERIES

Never has there been a more urgent need for a series of well-produced,

straightforward, practical guides to leamning to use a computer. It is in
response to this demand that The DK Screen-Shot Programming Series

has been created. It is a completely new concept in the field of

teach-yourself computing. And it is the first comprehensive library of

highly illustrated, machine-specific, step-by-step programming manuals, N I L R

BOOKS ABOUT THE ZX SPECTRUM
This is Book One in a series of unique step-by-step guides to

.......

............

programming the ZX Spectrum. Together with its companion volumes, it
will build up into a self-contained teaching course that begins with the
basic principles of programming, and progresses — via more

sophisticated techniques and routines — to an advanced level.

BOOKS ABOUT OTHER COMPUTERS
Additional titles in the series will cover each of the world's most popular

computers. These will include: i

cma ey af—

Step-by-Step Programming for the BBC Micro

Step-by-Step Programming for the Commodore 64

Step-by-Step Programming for the Acorn Electron

Step-by-Step Programming for the AL_PpIe |

Step-by-Step Programming for the IBM PCjr

IAN GRAHAM

After taking a B.Sc. in Applied Physics and a postgraduate diploma in - |
Journalism at The City University, London, lan Graham worked as

assistant editor of Electronics Today International and deputy editor of

Which Video? Since becoming a full-time freelance writer in 1982, he has
contributed to a wide range of technical magazines (including Computing

Today, Video Today, Video Search, Hobby Electronics, Electronic Insight,

Popular Hi-Fi, Science Now;, and Next...) and has also written a number of
popular books on computers and computing. These include Computer &
Video Games, Information Technology, The Inside Story — Computers,

and The Personal Computer Handbook (co-written with Helen Varley),

>

L BN

| | ‘ PR PROGRAMMING SERIES L !

STEPBY-STEP |
PROGRAMMING |

i TR e

: | IAN GRAHAM | | B

R ‘ | ‘ il ‘ | o ‘ 2|
AHE
—— ’ DORLlNG KINDERSLEY-LONDON|

HH u| CERRRE T

CONTENTS

THE ZX SPEI:T RUM

[
INSIDE THE COMPUTER

o AL =] o g |
il L ™
T B e
5 ||':.| Tb.‘ : g :‘1 e, 1 e
" “ o g WO P a Lo RN
i o o | a |' 14 s s s e gy
L] i T & |'_
. i III-l Iul.l..l,r .
g1 I’ !
- ¥ '-'-I.-l:a . :.' k al
r i I' L)
I i e =]

THE SPECTRUM
KEYBOARD

The DK Screen-Shot Programming
Series was conceived, edited and
designed by Dorling Kindersley
Limited, 9 Henrietta Street, Covent
Garden, London WC2E 8PS.

Project Editor David Burnie

Art Editor Peter Luff '

Design Assistant Steve Wilson
Photography Vincent Oliver
Managing Editor Alan Buckingham
Art Director Stuart Jackman

First published in Great Britain in 1984
by Dorling Kindersley Limited,

9 Henrietta Street, Covent Garden,
London WC2E 8PS.

Second impression 1984

Copyright (©) 1984 by Dorling
Kindersley Limited, London

Text copyright ©) 1984 by Ian Graham

As used in this book, any or all of the
terms SINCLAIR, ZX SPECTRUM,
ZX MICRODRIVE, MICRODRIVE
CARTRIDGE, and ZX PRINTER are
Trade Marks of Sinclair Research
Limited.

"

SETTING UP

USING THE SCREEN

COM PUTER
CALCULATIONS

—

All rights reserved. No part of this
publication may be reproduced, stored
in a retrieval system, or transmitted in
any form or by any means, electronic,
mechanical, photocopying, recording,
or otherwise, without the prior written
permission of the copyright owner.

British Library Cataloguing
in Publication Data

Graham, Ian, 1953~
Step by step programming for the ZX
Spectrum. Book 1.
1. Sinclair ZX Spectrum
(Computer)——
Programming
I. Title
001.64°2 QA76.8.5625

ISBN 0-86318-026-4

Typesetting by The Letter Box
Company (Woking) Limited, Woking,
Surrey, England

Reproduction by Reprocolor Llovet
S.A., Barcelona, Spain

Printed and bound in Italy by

A. Mondadon, Verona

‘18?

WRITING YOUR
FIRST PROGRAM

DISPLAYING YOUR
PROGRAMS

1l Glas
=20 IHFllT TLEREBET 1E Yo

PRINT “#ES#@s®tsdssshss

& 9

4@ FRINT “Zx Spectrum P
ed by "inE

S0 PRINT

LR l-!--t XL RN R N

SOrPRINT “Hrshbsassss
C FEETER LR NN N

4@ PRINT “Ix S
£ d

EE'

a1

n &
I':F-..T.I-J] b
FEZEXEREE Y R L

CORRECTING
MISTAKES

i T

COMPUTER
CONVERSATIONS

15—

WRITING PROGRAM
LOOPS

|

THE ELECTRONIC
DRAWING-BOARD

DESIGNING YBUR
OWN CHARACTERS

|-« #37

ERee g |
SPECIAL EFFECTS

WITH SOUND

ANIMATION

E | |
|NTRODUC|NG COLOUR

TR P R T T TR TRy

36|

" COLOUR GRAPHICS

SPECIAL SCREEN
TECHNIQUES 1

| ‘40 \ Lol

SPECIAL SCREEN
TECHNIQUES 2

& £ 47

SOUND, NOTES
AND MUSIC

T |32 '

DECISION-POINT

PROGRAMMING

UNPREDICTABLE
PROGRAMS

3 ;VRITING
SUBROUTINES

50
COMPILING A
DATA BANK

e

——

QUICK WAYS TO
STORE CHARACTERS

ADVANCED COLOUR
GRAPHICS

HINTS AND TIPS

HOWTO KEEP
YOUR PROGRAMS

SO | [EEUE |

GRAPHICS AND
CHARACTER GRIDS

GLOSSARY

THE ZX
SPECTRUM

| ¥ Volt DC socket The

| Spectrum is supplied with
a power adaptor that

| translorms the high-

| wvoltage alternating current
CAC) supply into a 9 Vol

| direct current (DC) supply

since 1ts launch in April 1982, the ZX Spectrum has
become one of the most popular home computers
available today. Despite its small size, it is potentially
very powerful. It contains the same basic components
as much larger computers and uses its own version or
“dialect” of the most popular home computer language,
BASIC. The Spectrum offers an inexpensive way of
learning to program a computer with many of the
features found in larger, more elaborate systems.

‘ITwo versions of the Spectrum are available. They are
identical but for the size of the memory — the 48 K model
can hold more information than the 16K version. The
48 K. model has a memory capacity which 1s greater than
many more expensive personal computers. All the
programs in this book will work equally well on either
the 16K or 48K machine.

Connectors and peripherals

From the outside the Spectrum seems to be little more
than a slim black case with a keyboard on top, which is
composed of soft moving keys. Although 1t looks like a
typewriter keyvboard, i1t 1s actually very different. As
you can see on pages 10-11, each key can produce
whole words as well as letters, and when used in
programming, each key can perform up to six different
functions,

If you turn the computer around so that you are
looking at its back panel, you will see that there are four
sockets and a slot. The small sockets connect the
Spectrum to a television, cassette recorder and power
supply. You can find out how to use a cassette recorder
with the computer on page 60. The longer slot is the
edge connector, which is actually a part of the
Spectrum’s circult board exposed at the edge of the
computer casing. 1'he metallic strips on the edge of the
board are used to connect extra pieces of hardware,
such as printers, microdrives or joysticks, to the
computer. When you are handling the computer, do
not touch any of these contacts, as grease and dirt can
cause mulfunctions if you later use the edge connector
with any “peripherals”.

The Spectrum produces a colour television picture,
but 1t can also be viewed in black and white. In this case,
the different colours show up as shades of grey. The
computer itself produces all the sound effects used in
programs. If you turn the Spectrum over so that you are
looking at the bottom panel, yvou will be able to see the
circle of holes 1n one corner that 1s the sound outlet for
the Spectrum’s tiny loudspeaker. It is capable of
beeping or playing simple tunes.

suitable for the computer.

— X Spectrurm

CLEAR

lilii;.{l_" connector ['his
multi-terminal socket
connects the computer
with a range of hardware
including the Spectrum
printer, Microdrive units
and “analogue” controls
such as games joysticks.

MIC socket When this s
connected to a cassette
recorder's microphone
socker, programs can be
transferred from the
computer to be stored on

Casselte,

WL WA

EE

= N

BORDER

EAR socket This socket
allows the Spectrum to
receive stored prograrms
from a tape cassette. Itis
connected to the cassette
recorder’s EAR socket.

T'Y socket '|'he picture
signals that the Spectrum
produces are Ted o a
television's acrial socket
from the Spectrum’s TV
socket, using a cable
supplied with the

L |||'||1'||Hr_'|' .

BT e e ¢ e S

| The microchip command instructions it needs to carry
chain All the chips within out the computer’s
: the Spectrum form an functions.

B . electronic chain of In this view of the
command, with the CPU _computer’s interior, the
: : performing all the executive connectors that link the

tasks. The rest of the chips— keyboard to the rest of the

The ZX Spectrum is constructed on a single printed including the RAMs, ROM computer have been .
circuit board. The major components are integrated and ULA — act as temporary detached. It is advisable not

circuits, or “chips”, which look like thin rectangular or permanent information to open your Spectrum as

slices of black plastic with up to 20 metal pins storage systems. These these connectors can easily
protruding from each edge. These connect the chips to supply the CPU with the be broken.

contacts which run over the surface of the board.

At the heart of the Spectrum is a microprocessor
which makes up the computer’s Central Processing
Unit (CPU). The CPU does all the computer’s
calculations, monitors the keyboard and acts on any
key-presses it detects. But despite the CPU’s
complexity, it can only follow instructions that it is
given. The instructions you type on the keyboard must
first be translated into the numerical machine code that
the computer works 1n.

The program required to perform this translation is

stored permanently in a Read Only Memory (ROM T T e e
also kngwn as a “n}t;n-vulal_il ¥m -*rfmr Thiy' I{n\zm'um:;I : Uneommiad Logicircay k-
s 5 = Y L .}r (ULA) This provides additional 3
is not free for you to store your own programs in — its timing and control functions
contents can DIII‘_‘,J' be read. The prograin is unaffected that are not stored by the

by the computer being turned on or off. permanent program contained

The Spectrum’s Random Access Memory (RAM) in the ROM.
offers storage space for the user. Everything you type in
on the keyboard is stored in RAM until you either type
in the keyword NEW or switch off the power. Because
the contents of RAM are erased when the power is
interrupted, it is also called a “volatile” memory.

Phase Alternation Line (PAL)
encoder This converts the

stream of data produced by the
i Spectrum into a high-frequency
Main board components signal that can be fed into a

The two versions of the Spectrum are distinguished by television.
the size of their RAMs — 16K and 48K. The K stands
for kilobytes, each equivalent to 1024 bytes. A byte is a
standard piece of electronic information in binary form.
It 1s made up of eight bits — pulses of electricity which
cach representa 0 or 1. Bytes can be thought of as acting
like words in the computer system, with bits being the
letters. The main difference between the Spectrum’s
system of communication and English is that computer

words are all eight letters long, and are made up from an e
alphabet containing only two letters. The Spectrum e
does everything from producing colour television e
pictures to playing tunes by using this binary code. Random Access Memory
All the computer’s activities are synchronized so that (RAM) Eight RAM chips f.

the correct information is available in the right place at provide 16K of storage for all |
the right ume. This synchronization is achieved by an the programming information

. T ol 2o lana TN T that the computer 1s given after

internal clock. The clock 1s based on a crystal oscillator W e L e

h‘ T “‘k‘” : h f3 5 .“,] i 2] CINg h"n'rillil.. el ChTh, 16 SECOTIC

Additional timing and control operations are provided chips provides an additional

by a large chip called an Uncommitted Logic Array 32K of memory in the 48K

(ULA), which carries out complicated logic functions. version of the Spectrum.

Cassette recorder sockets
These are used to record or play
back programs.

Logic chips This area deals
with a variety of logic functions
including those needed 10

“ “imterface” with hardware
linked to the computer.

Central Processing Unit
(CPU) The executive part of
the computer. This
microprocessor carries out all
calculations and controls
activities in the rest of the
computer, drawing on
information held in both ROM
and RAM,

Read Only Memory (ROM)
T'his chip contains the
INSIIUCTIONS NECessary Lo turn
programs into a form that the
computer’s most important
chip, the CPU, can understand.
Unlike RAM, its contents do
not disappear when the power 1s
switched off, It contains the
computer's BASIC interpreter,

9 Volt DC socket The power
supply socket.

Voltage regulator This
prevents changes in voltage
disrupting the activities of the
computer,

Loudspeaker The speaker
produces notes and sound
effects when called on by a
program.

W R T 1« [T

THE SPECTRUM
KEYBOARD

On a conventional typewriter keyboard, each key is
used to print a lower case letter and (with the shift key)
the upper case version of the same letter. The Spectrum
keyboard works like this, but because it has more than
one shift key, it is much more versatile. The keys on the
Spectrum are capable of selecting as many as SiX
different functions. The 40 Spectrum keys can produce
a total of around 200 letters, words and symbols. You
may find using the keyboard a slow process to begin
with, but once you have mastered the use of the shift
keys, finding your way around all the different words
and symbols will soon become second nature. Two
different kinds of shift key — CAPS SHIFT and
SYMBOL. SHIFT - are used either independently or
together to select key functions.

Keyboard technique
The Spectrum keys are moving, calculator-style
buttons. Every time one is pressed, making a character
or word appear on the television screen, the computer
produces a single click to let you know that the contact
has been made. If you hold a key down for more than a
couple of seconds, the symbol is repeatedly printed.
You don’t have to be an accomplished typist to use
the keyboard. The Spectrum saves you a lot of typing
because the command words used by the computer
need not be typed out in full. Pressing a key once makes
the whole word printed on the key appear on the
television screen. To help you further, commands and
symbols that are often used together in programs are,
wherever possible, grouped on adjacent keys.

Understanding the cursor

The Spectrum accepts instructions only if they are in a
logical sequence, and it actually tells you what kind of
instruction or symbol it expects by showing one of five
flashing cursors. If the cursor is a “K”, the computer is
expecting you to supply a keyword next. This is simply
any of the command words in white on the keyboard.
So, if you press the P key, the word PRINT, and not the
letter PP, appears on the screen. If the cursor 1s flashing
“L.”, pressing the P key produces a lower case letter p
on the screen. To produce a capital PP, press the CAPS
SHIFT key while pressing p. This will make the cursor
change briefly from “L” to “C” to show that capitals
have been selected. The “G” cursor will appear when
you use the GRAPHICS key, while the “E” (extended
mode) cursor will appear when you use the shift keys to
select keywords printed on the keyboard in red or
green. It reverts to “L"” after ENTER 1s pressed.

T R P e e R T

Number keys These offer a
quick and easy way of
producing graphics when they
are used after pressing CAPS
SHIFT with GRAPHICS.
The graphics symbol on the
number key will then appear
on the screen. Keys 0o 7 also
control the colours produced
on the screen.

EDIT This 1s used to
“extract” a line from a
program in order to change or
edit it. The EDIT function 1s
selected by the CAPS SHIITT
key.

BEEP When the shift keys are
used to select the extended
mode, this key programs the
command which controls the
Spectrum’s sound synthesizer.

CAPS SHIFT This allows
you to select the upper case
(capital) version of a letter,
instead of the lower case
version normally used. It is
also used with SYMBOQOL
SHIFT to obtain the words
and characters above and
below the keys.

ZX Spectrum

CAPS LOCK

NEW

Screen display keys The red
keywords under keys X to M
produce the commands
controlling the way the text
and screen background 1s
displayed. The keywords
INK and PAPER, together
with the white keyword
BORDER, are used in
conjunction with the colour
keys.

bEO

Cursor controls These four
keys are used to direct the
SCreen cursor to any point in a
program that needs alteration,
The cursor function 1s selected

GRAPHICS When used
with CAPS SHIFT, this key
switches the Spectrum 1o the
graphics mode, ready to
accept graphics symbols

by CAPS SHIFT,

ey,

i
YELLOW._

€ ®

WHITE
o

1
k. 1

R

6

Y s

RETURN
GOTO

GOSUB

CONT

B | 1B

from keys 1 1o 8,

e e e

GRAPHICS

I O

INPUT POKE PRINT

FAUSE |

DELETE When used with
CAPS SHIFT, this key
backspaces the cursor and
deletes keywords and symbols
on the screen. It also codes for
the “colour” black.

PRINT This key carries the
frequently-used combination
PRINT". Pressing this key
once produces PRINT, while
pressing it again while pressing
SYMBOL SHIFT produces

the double quotation marks.

ENTER The Spectrum will
not respond to most
commands unless they are
followed by this key. Itis
roughly equivalent to the
typewriter’s carriage rerurn
key. When the ENTER key s
pressed, the Spectrum will
then respond to a command or
point out any mistakes in
typing.

SPACE This 15 equivalent to
the typewriter’s space bar, It
also has a second function - to
BREAK or halt a program
before it has finished running.
BREAK is selected by CAPS
SHIFT,

~ How to select key functions

=
-
-

SYMBOL SHIFT The red
symbol on each key 15 selected
by holding this key down
while the key required 15
pressed. Itmay also be used in
combination with CAPS
SHIFT.

Letter keys When used with the “K” cursor, a letter
key will produce a keyword, The cursor will then
change to “L", and the letter key will then produce
letters. The kevwords above and below the key are
produced by combinations of the shift keys.

CAPS
SHIFT

.I"‘11'.'-.I| and hold

CAPS
SHIFT

Fross together then release

Unshifted functions I
no shift keys are used, a
letter key will produce
first its white keyword,
then the lower case letier,

CAPS

SHIFT

Il'r\'l_"'ih Linget |||.rr them release

CAPS
SHIFT

Fress and hiald Press and hold

SO
CAPS

Press and hiol

an
SHIFT

Press together then relense

MNumber keys When used with CAPS SHIFT and the
9 key, these produce keyhoard graphics. The keyword
in red below a number key 1s produced by a
combination of shift keys. The red symbol on the key
15 produced by the SYMBOL SHIFT key,

rELLCYWY
- -

6 @

rass and hold

Unshifted functions [f
no shift keys are used, a
number key will just
produce numbers,

ress together then release Press and hold

.
SETTING UP

Setting up your Spectrum is quite straightforward and
logical. Getting the best possible results on the
television screen sometimes takes a little longer. To
begin with, connect your Spectrum power supply to the
mains and link it to the computer. The computer has no
on/off switch. As soon as you connect it to the power
supply, you should be able to hear the computer
humming if the connection has been made.

Now vou need to make a connection between the
Spectrum and the television so that you can see the
results of your programming. Take the black lead
supplied with the computer and plug it into the
television’s aerial socket. PPlug the other end into the
Spectrum socket marked *“IT'V”, and then switch on the
power to the television.

The first results that you see will probably look like a
blizzard, accompanied by a loud hissing coming from
the television loudspeaker. Turn the television volume
control down as far as it will go. The Spectrum will
produce all the sound effects you program with its own
built-in loudspeaker. Now switch the television to a
channel that you can allocate permanently to the
computer. The television treats the Spectrum’s signal
like any ordinary broadcast, so you have to tune the
television just as you would to watch a television

the screen:

SPECTRUM SCREEN SIGNAL

& 198F Sinclair Reseafch Lid

[f you cannot get any picture at all from the computer,
check that all the power connections have been made
properly. Next, check that the Spectrum’s TV socket is
connected to the television’s aerial socket and make
sure that the channel you are tuning is the one selected.
You should only have to tune your television once.
After that just selecting the right channel should
produce a correctly tuned display.

program. Adjust the tuner controls until you see this on’

i
!

How to test the Spectrum’s colours

To enable vou to test all the Spectrum’s colours, you can
use this very simple series of commands to see all the
colours on screen. Having turned the computer on,
press the following sequence of keys (ENTER here
indicates the ENTER key at the right of the keyboard):

Bl ENTER
B2 ENTER
B3 ENTER
B4 ENTER
BS ENTER
B6 ENTER
B7 ENTER

Every time you press the ENTER key, you should see
a change in colour in thes “border” area around the
screen. (The techniques used to produce colours are
explained on pages 34-35). Bl ENTER should colour
the screen like this:

B1 COLOUR DISPLAY

When you use this sequence of colour commands to
change the colour of the screen, you may find that they
seem to have no effect. The tuning required to pick up
the Spectrum’s colour signal precisely is quite delicate,
and you will need to experiment for a while to get the
best results. If you do get a picture, but then if you
cannot produce colour on the television, there is a
possibility that your television is not able to interpret
the Spectrum’s colour signals. Your dealer should be
able to advise you if this is the case.

Although the Spectrum’s output is normally viewed
on an ordinary television receiver, the signal can be fed
into another type of television set known as a monitor.
‘This contains everything that your television receiver
has except a tuner, so It cannot receive television
broadcasts. Changing the Spectrum’s stream of data to

l

PR T [e, e

a high-frequency television signal and then reversing
the process inside the television reduces the picture
quality. By eliminating these stages, a monitor 1s able to
produce better quality pictures. The screen photographs
in this book were taken using a monitor, so your own
television may produce slightly less clear displays.

Connecting peripherals

The next connection you will want to make is to a tape
cassette recorder. The method for using a tape recorder
to save your programs is covered in detail on page 60. If
you do want to use the cassette recorder, make sure that
you have the connecting lead. This is a two-core flex

(R

which is coloured black and grey. It is very important
that you do not cross-connect this, or the cassette
storage and playback will not work.

Later, you may wish to add a printer to your system.
The Sinclair ZX printer is supplied with a short cable
terminated by a plug which clamps onto the edge
connector in the Spectrum’s rear panel. It cannot be
fitted the wrong way round. Microdrive units are fitted
through an interface which sits underneath the
computer, again linking up with the edge connector.

When you are using the edge connector, don’t force
a plug in if you feel any resistance. You may be pushing
the plug in wrongly, and this could cause damage.

A
Arranging the computer To make using
the computer as comfortable as possible,
the television screen should be lined up
behind the computer so that both can be
seen without turning your head. The
screen should not be too close.

Cassettes used for program storage
should be kept away from the power
supply, computer and television.
Recorded programs may otherwise be
disrupted by the magnetic fields
produced by these pieces of equipment,

o
USING THE SCREEN

meg set up your ":PLLI.I"I.II]I, you may already have PRINT ERROR REPORT
given in to the temptation to tap a few keys and see what
happens. If not, try it — you can’t do any damage. The
first thing you will notice is that the Sinclair copyright
line at the bottom of the screen disappears, and is
replaced by a line of characters. But as you will have
seen on pages 10-11, exactly which characters appear
depends not only on which keys you press, but also on
the combination of keys that you use.

Starting to PRINT

To make some sense of this apparently confusing
situation, disconnect the power for a second or two to
clear the computer’s memory and then press the key
with PRINT on it (the P key) followed by one of the
number keys, and then by the key marked ENTER. As
soon as you press the ENTER key, the number you
pressed will appear at the top of the screen. You can use
PRINT to put a series of numbers on the screen: Instead of putting x on the screen, it has been hunting
PRINT WITH NUMBERS in vain for something in its memory, a variable.
| Using the SYMBOL SHIFT key, now type in:

PRINT “x”

When you press ENTER, the computer makes the
Correct response — it PRINTSs x at the next line.

You have just discovered that to the computer, x on
its own and “x” mean two completely different rhlngm
‘The computer treats any letter on its own as a varlable.
A variable is simply a label identifying a number stored
in the computer’s memory. To make PRINT x
comprehensible to the computer, give x a value
(remember to press the ENTER key after each line):

PRINT 253.095W LET x=14
PRINT x

o =J= Op
AL L]
i

n

=
=
=
1
&
J.b

= Ein

Uarrable o

e 0L
« Ma0
v DO
QmK

0

USING LET AND PRINT

If, instead of disconnecting the power, you press the
key marked CLS (the V key) and then the ENTER key,
everything that you have PRIN Ted will disappear.

What 1s a vanable?
Now try typing in:

PRINT x

iulluw:.d by the ENTER key. The computer will
respond to this — or a cnmnnnd to PRINT any other
letter — by displaying an error report:

2 Variable not found, 0:1

This report, one of many that the computer has stored
in its permanent memory, indicates why it cannot
follow the instruction that you have just given it:

Now x 15 labelling something, the number 14. LET (on
the L key) is a command which gives a label and a value
to a slot in the memory. Every time you ask the
Spectrum to PRINT x, it will display the last value
keved in. Because x is always a number, it is called a
numeric variable.

How to use strings

So x is a numeric variable, but *“x” 1s not; furthermore,
even if you substituted a number for “x™, it would not
become a numeric variable, unless you removed the
quotation marks. The computer displays everything
inside quotation marks exactly as you type it. You can
use any characters on the keyboard - letters, numbers,
mathematical symbols and punctuation marks. lype
these examples on your keyboard. Remember that you
can use PRINT as many times as you like, as long as you
press the ENTER key at the end of each command. You
can pick capitals with CAPS SHIFT and CAPS LOCK:

PRINT “AGE”
PRINT “London™
PRINT “SPECTRUM SEREEN TEST”

PRINTING STRINGS

a
=
1
[=3
o
ar
b4
L
=
L.
=

n
= ‘RUM SCREEM TEST

The characters between the quotation marks are called
a string. In the same way as a number is stored in the
computer and labelled by a numeric variable, a string is
stored and labelled by a string variable. String variables
are again always letters but unlike numeric variables
they always end in a dollar sign. In the line:

LET A3="LONDON"

A% is the string variable and LONDON is the string it
labels. Having typed in the above line on the keyboard,
clear the screen with CLS and then type:

PRINT A%

After you press the ENTER key, the computer will
reveal the contents of the string variable typed in.

Positioning type with TAB and AT
Now try a different sort of PRINT command, this time
with a sequence of strings:

PRINT *“One”, “Two”, “Three”, “Four”, “Five”,
EESix!‘!j EESEHEHIFJ ELEight!'ﬂ

You will find that after you press ENTER the words are
PRINTed in two columns. In fact, the screen is divided
into two invisible fields, each 16 characters wide. “One”
is PRINTed in the first field, “Two” in the next field,
“Three” back in the first field, and so on.

However, two further commands, TAB (on the P
key) and AT (on the I key), allow you to PRINT
characters or strings at any position on the screen, Clear
the screen with CLS and then type these two lines (you
will need to type out everything between the quotation
marks in full using letters):

PRINT TAB 10;“TAB EXAMPLE”
PRINT AT 12,10;“x This is AT 12,10

If you press ENTER after each line, your screen should
look like this:

USING TAB AND AT

THE EXxAMPLE

¥ This 15 AT 12.1a

This shows how TAB and AT position the text. TAB is
used like the tab setung on a typewriter to PRINT at
any position on a line. The number that follows it is the
character position. There are 32 positions on a line — the
TAB positions for them are numbered from 0 to 31,
working from the left.

AT works like TAB, but it allows you to specify a
vertical position as well, so you can PRINT at any point
on the screen. AT is always used with a pair of numbers
separated by a comma. The first number is the line
number, working downwards from the top of the screen.
There are 22 lines on the screen, numbered from 0 to
21. The second number is the character position, which
works just like the number used with TAB. Always
remember the comma when typing an AT command,
otherwise the computer will not understand 1t.

COMPUTER CALCULATIONS

The PRINT command is not limited just to displaying
characters on the screen. You can also use it in
conjunction with the four mathematical functions —
addition, subtraction, multiplication and division - to
perform calculations that you can follow on your
television set,

Let’s take addiuon first. The plus sign is on the K
key, the second along from the EN'TER key. Because it
1s the red symbol on the key-top, the SYMBOL SHIFT
key must be pressed with the plus key to select the
required character. To add two numbers together,
simply use PRINT followed by the calculation.
Subtraction 1s carried out in the same way. The minus
sign, which doubles as a hyphen when used in text, is on
the J key. Like the plus sign, it is also a shifted
character. Here are some examples, together with the
results they produce. Remember to press the ENTER
key at the end of each line to make the computer carry
out the calculation:

PRINT 6+18
PRINT 250+16.5
PRINT 1.999-+6
PRINT 905+139
PRINT 539.7-19.4
PRINT 1842—-655
PRINT 4.688—4.666

ADDING AND SUBTRACTING

W om

=
=2
1
5
1

B9 Ma
BSEan
Bis

=]

PRIMT 4.888=-d4 .86

Multiplication is carried out, not with the familiar x,
but with an asterisk, *. The asterisk is the red
SYMBOL SHIF'T character on the B key on the bottom
row of the keyboard. Division uses the oblique stroke,
/, a SYMBOL SHIFT character on the V key. In 24/8,
for instance, the left-hand number is divided by the
right-hand one. To key in the first of the following
examples, press PRINT 36 and then ENTER:

PRINT 3%6
PRINT 14%9
PRINT 2.5%18
PRINT 5%78
PRIN'T" 24/8
PRINT 366/3
PRINT 600/15 |
PRINT 100/0.01

MULTIPLYING AND DIVIDING

e o

1
i §
&
o
-
o
1

210 Dopne

FRIMNT 1080 .0L1

Exponents and square roots

In addition to these familiar maths functions, you can
rais¢ one number to the power of another, (called
exponentiation). The keyboard cannot produce
superscripts like the 3 in 2”, so instead you have to use
the up arrow (1) symbol. 2° is calculated by PRINT
2 T 3. Here are some examples of the up arrow in use:

EXPONENTS

= 00 s O OB
DRk pPER
i

i
1]

FRINT 2ti15l

The computer also allows you to find out the square root
of a number. The command for this is SQR, the green
function on the H key. SQR is used like this:

PRINT SQR 2

When you press ENTER after keying in this line, the
computer will PRINT out the answer. However, if you
try this command with a minus number, the computer
will produce an error report to let you know that you
have asked for a mathematical impossibility.

Getting the order right

You can carry out a number of different calculations
using the same PRINT command. Try it with addition
and subtraction first:

PRINT 2+4+6+3+7—8+3—4
PRINT 48—42+16-2
PRINT 122—-19+32+2.5
PRINT 4.842.841.9
PRINT 1024+ 14—23
PRINT 15.5-12.54+7.6—3.8
PRINT 56—54+8+34—2+4+34492—-10043

MULTIPLE CALCULATIONS

You can enter the figures for each calculation in any
order at all, and the result will be the same. However,
when you add multiplication and division to the chain
of calculations, apparently odd things may happen.
Look at the next list of examples, and try the
calculations for yourself. Say you want to add two
numbers together and divide the result by 2. The order
in which the numbers are added should not make any
difference to the result, but it appears to do so. Each of
these lines PRINTs a calculation and result:

PRINT “3+4/2=";3+4/2
PRINT “4+3/2="34--3/2
PRINT “(3+4)/2="3(3+4)/2
PRINT *“(4+3)/2="3(4+3)/2

If 3+4 is exactly the same as 4+ 3, then why should the
subsequent division by 2 make any difference? The
reason is that the computer does not necessarily carry
out calculations in the order in which you PRINT
them on the screen. It performs exponentiation first,
then multiplication and division, and finally addition
and subtraction, always working from left to right. So
in PRINT 3+44/2, 4 1s divided by 2 before 3 is added. In
PRINT 4+3/2, 3 is divided by 2 before 4 is added.
The problem you set the computer was to add two
numbers together and then divide the result by 2.
Neither of these examples does that. But you can
change the order in which the computer performs
calculations by enclosing parts of the calculation inside
a pair of round brackets, as in the last two examples on
the screen. Here, the addition within the brackets is
carried out first and then the result 1s divided by 2.

Knowing your limitations

There are limits to the numbers that the Spectrum can
handle and these limits take two forms — size and
accuracy. The size limitaton 1s unlikely to
inconvenience you. Positive numbers can have any
value from 4x107" (4 divided by 1 followed by 39
noughts) to about 10™ (1 followed by 38 noughts). The
Spectrum stores these numbers to an accuracy of 9 or 10
figures. The computer memorizes just the first nine
digits — the rest it sets at zero.

You may come across another of the computer’s
quirks when dealing with very big numbers. The
Spectrum does not display them in the way in which
you type them on the keyboard. For example, PRIN'T
2000000000000 produces 2E12 on the screen (the E
stands for exponent). This is simply a shorthand way of
displaying 2x10'* or 2 followed by 12 zeros, the
number you keyed in. Try entering PRINT 10, PRINT
100, PRINT 1000 and so on and see how the computer
deals with increasingly big numbers.

WRITING YOUR FIRST PROGRAM

So far you have given your Spectrum commands to
which it has responded immediately. These commands
have been very simple — in many cases it would have
been quicker not to have used the computer at all,
However, commands on their own are not computer
programs. The computer reads each command, carries
it out and then forgets it. A program on the other hand
15 an orderly list of instructions which the computer can
store in its memory. It can carry them out as and when
you wish, and as many times as you want.

From commands to lines
Having found a task that you want your Spectrum to
carry out, the next job is to write the program in steps
that the computer can understand. The Spectrum, like
most personal computers, uses a computer language
called BASIC (Beginners’ All-purpose Symbolic
Instruction Code). BASIC is an example of a high-level
language, a language composed of words and symbols
with which you, the user, are already familiar. It is,
therefore, an easy programming language to learn,
The commands you key into your computer can be
turned into programs by adding line numbers:

USING LINE NUMBERS

1@ LET am="LOMNDOR"
2)FRIMT &k

As you key the program in, you will notice that the
commands are not now carried out as soon as you press
the ENTER key, but instead remain displayed on the
screen. Now that the program is safely stored in the
computer’'s memory, it only remains to run it and see
what it does. Do that by pressing RUN then ENTER.

You may be wondering why the lines are numbered
10, 20 and not 1, 2. When you are writing and testing
programs, you will frequently want to add extra lines. If
the existing lines are numbered 1, 2, 3, 4, and so on,
there is nowhere to put the new lines in sequence. In the
above program, there is room to add extra lines

numbered -9 and 11-19, if necessary.

The program 1s still in memory, so to try the next
one, switch off the power for a second or two to reset the
computer and erase the old program. Then see what the
following produces when you RUN it:

SCREEN DEMONSTRATION PROGRAM

crEefn Frint

B0
lodalol
Ligilwei]
nInrm

§ 2,8 "DEMONSTRATION
NT AT 5.10; "SCREEN DISPL

=1k [
1@ 000

T

1]
LELg
1 7 DIl

i
I ~d

Taking it from the top, what is a REM? REM is short
for REMark. It’s a useful device for titling or labelling
parts of programs, so that you can find them again
quickly. As your programming ability grows, you will
find REM lines very useful for reminding you how a
particular program works. Other people will also be
able to follow your programs more easily if there are
periodical REM statements to explain what you are
doing. The computer doesn’t do anything with a REM
statement other than store it in memory.

CLS you have come across already. It’s a quick way
of taking all the old unwanted information off the
screen. Using PRINT on its own (line 30) may at first
seem a little crazy. PRINT tells the computer to send
whatever follows it to the screen and move on to the
beginning of the next line on the screen. If nothing
follows PRINT, it just moves to the next line, Here, it
1s used to move the line of hypens down.

How to correct mistakes

It 15 easy to make mistakes on the keyboard which
prevent the program from working. The Spectrum will
not allow you to ENTER a line that contains a mistake
in BASIC, but this doesn’t stop you writing a program
with correct lines that produces the wrong result. If you
do notice a line that needs changing, there is no need to
retype the program. The computer always uses the last
version of any line, so to make a change, simply retype
the line at the end of the program, press ENTER and
the computer will insert 1t in the correct place,

[e e e e R e

Why punctuation is important
The next program uses the techniques demonstrated on
pages 1617, Switch off the power again for a second or
two before keying it in:

CALCULATIONS PROGRAM

In each of the three calculations, the screen first shows
what the calculation is (everything within the quotation
marks 15 displayed exactly as it 1s written), and then the
computer carries out the calculation itself and shows the

result on the same line. The semi-colon 1s very
important. It ensures that the result is shown on the
same line as, and immediately following, the details of
the calculation. Try the same program with a comma, a
colon and nothing at all instead of the semi-colon,
You'll quickly realize how important punctuation is in
computer programming. Correct spacing 1s also vital if
you want to produce a readable display when the
computer PRINTs numbers and strings following each
other. The following program, which again combines
some calculations with PRINT, shows spaces within
strings and how they appear when the program 1s RUN:

CONVERSIONS PROGRAM

“COMIJERS IOMS
"1 roctm'dlRER .54 w

"1 galitons" ;S 1.76;"
11-_,"1'-'-" Kilometress"; 1015

"l dagy=s", 2460 x80,; " 2

CONVERSIONS DISPLAY

COMUERSIONS

1 roct=00.48 ceEntime trres

1@ kRilomelresed 825 miles
1 day=868420

LTECOonmds

How to write a flowchart

If a program 1s to RUN properly, it must carry out the
correct operations in the right order. Drawing a
flowchart is a useful way of outlining the steps involved
in making the computer perform a task. This flowchart
shows how to plan a program to add up all the numbers
from 1 to 1000. Each shape is a separate operation, and
the arrows connecting the shapes show the path that the
program is to follow. NUMBER and TOTAL represent
figures that can be entered in a program as numeric
variables — n and t. This program contains two features
which you will encounter later — a program “loop™ and
a program ‘‘decision point”,

This chart shows all the steps

needed to program a computer
to add together all the numbers START
from 1 to 1000, ¥

Key

LET NUMBER=0

€ % ;
Terminator Signals beginning LET TOTAL=0
and end of flowchart +

1 LET NUMBER=NUMBER + 1

Instruction Identifies each v
separate operation LET TOTAL=TOTAL
+NUMBER

IS NUMBER= 1000z

/ PRINT TOTAL /

Y

w0

Decision point Instructs
computer to make a decision

y y

Input/Output Instructs
computer to take in or give
out information

DISPLAYING YOUR PROGRAMS

As you start writing programs, you will often want to
refer back to check on something or perhaps alter it in
some way. In order to do that, you must be able to see
the program on the screen again after it has been RUN.
‘The Spectrum allows you look at anything you have
stored in its memory. In this case, you want to look at
the “program listing” — the program as you typed it in.
If you’ve just switched the computer on again after a
short break, type in a program from a previous page.
The BASIC word (or keyword) LIST will call up vour
program onto the screen again from the part of the
memory where it is currently stored. Every time you
press LIST the program will be displayed once more:

LISTING A PROGRAM

You haven’t transferred the program from one part of the
memory to the screen - it’s still held in memory. You
are now looking at a copy of it. If you want to make sure
of that, use CLS again to clear the screen. If you now
press I,Ib I, the program will then reappear. You can do
this as often as you like and the program will remain
safely in memory unless you disconnect the computer.

Moving around a LIST
You will notice that when a program has been LIS Ted,
it is displayed in an indented form, with the lines
beginning two characters further to the right than they
would if you had just keyed them in. Most of the
programs in this book are shown in their LIS Ted form.
LIST is very useful for developing a program. All
you have to do to see your program after RUNning is to
type in LIST followed by the ENTER key. But LIST’s
capabilities do not end with producing a whole program
for you to examine. If you key in the next program, you
will be able to see how to use LIST more selectively.
The program also demonstrates a technique which you
will soon be using:

OPERATOR PROGRAM

1a CLS
2@ LMNPIT

E

I FPRINT " ##%# %% 0 %0 0H 5 %% %% E%%E
ZERSBFEREHEE"

480 PRINT *"Zx SpecC
gd kBYW "ind

SO PEREIMT "2 L2232y 3 284 ibqdfiiss
i EHEF TR

“"Lhat 18 QYour mama™;n

L7y m Programm

(Incidentally, if you do RUN this program, press the
ENTER key after you type in your name). Now if you
want to display the whole program listing, type LIST.
But you might only need to see a few lines from the end
of a long program. Using the above program as an
example, press LIST 30. Only lines 30 to the end of the
program appear the second time:

PARTIALLY LISTED PROGRAM

=

"What LE2 YJowur Ramet:n

il A A E L E R LSRR ERERT T

DD Z[
e

LM Spectryum Programm

= m

R R R R R R S

TEFE LI EEERE R AR R R E R E

-
-

“LM SpECLMUM Programm

TEERERA RS Grrrr L L
e

#1D “Tw D=1

i o HE e T
HET i w i w T T kT
e e e e P

How to enter a new program
Imagine you are starting a new program. Clear the
screen and type in the first line:

10 PRIN'T “SPACE PROBE PROGRAM”

and RUN 1t. Something odd happens. The old program
15 still in memory. The computer PRINTS your new line
10, but then goes on to RUN the remainder of old
program, because you haven’t erased it:

ey - ™"

e ety

e

COMBINED OLD AND NEW DISPLAYS

SPACE FPROBE FPROZERAM
FREFFFFEIFEFREIRDN RS
=& SPECLIUMm Prog9ram
FEEFFEFFFNBRDANOBE LRSS

o iR BEE L
e d lEw i
EoE T)

[
L !
BEEEEE

Up to now you have been switching off the power for a
second or two before entering a new program, but there
are better ways of getting rid of old programs. One of
them is to use the BASIC keyword NEW. Press NEW
and the ENTER key, then key in the new line 10. This
time the old program will have gone for good.

RUNning a program segment

Programs may be RUN starting at any line number you
like. Often you may have trouble getting part of a
program to RUN properly. In a short program, it’s just
as convenient to RUN the whole program as it is to
RUN only a part of it. But what if the troublesome part
that you want to experiment with and RUN over and
over again comes near the end of a long program? It
soon becomes tiresome and time-wasting to have to
watch the first five minutes or so of the program unfold
before the suspect part comes up. Fortunately, you can
jump part of a program by using RUN and a line
number:

PARTIALLY RUN PROGRAM

18 CL5
20 ENEUT “WMat 1S Weur naneln

il

2@ PRIMT "#$%###44 033 x sz 38 spaxx
T EEEEEEEE R

dd PRIMNMT "ZM Spactif@uUim Progaramem
egd kd "inE

50 PRIMT "##fsi2zysissseseszan
o % N N s
et ket L EE LR N EEREEEEE L LT
Zx BpEcirum Progarammed By D&y id
AA XL AL LI EER Y ER T ELTEE FE R A

In this screen, the “‘operator” program from I:h?%
opposite page has been LISTed and then followed by
RUN 30 (produced by pressing RUN and 30 then the
ENTER key). The result is that the computer goes
straight to line 30, and then continues through the
program as before. If you have already RUN the
program, n$ will have a value — your name — and the
computer will PRIN'T this out, although lines 10 and 20
will be ignored,

You can get exactly the same effect with the keyword
GOTO. GOTO is one of the simplest and most useful
commands in the BASIC language. Used without a
program line in front of it, GOTO makes the computer
go straight to a specified line and then RUN a program
from that point. But when GOTO is actually part of a
program, the results become very interesting. You can
get an idea of what this command can do simply by
keying in this simple program:

10 PRINT “*";
20 GOTO 10

Your screen should fill up with a display like this:

GOTO DISPLAY

T AT FE T FETATTETTE+TE
COE T S : L
FTEFFFFAEAFTT AT TN N E & & % % =88
S EREEE R EREE RN RN LN YL g
R R R R R RN RN N RN
e

R R R
EEHRERDREEEEE T
¥ FEFEETETETEAR
oo W BNy

b LR U

- = e W

|

e o
EEE o

e S o

o o o ke o e e o o

SRR T

- o e

B W O o e e o o R o ok o
A0SR R o R ol R e o ok

" W
£ &
% %
W
% £
% W
x W
& 4
= %
= W
®E
T w
* -
EaE S
i %
*
L 5
R
=

I R T e R
R R T T

b A b e ok ool o
B e e e o e e g

Bode & G i W

e e e W e

S e B R e R
L R R T T

&
-
A
%
¥
3
&
*
-
*
X
*
L
*
=
i
%
p

in

ul

If you are puzzled about why this has happened, don’t
worry. We will be returning to GOTO soon after you
have mastered a few more BASIC keywords. However,
you will find that it seems difficult to get rid of this
display. The clue here is the word “scroll?” that appears
at the bottom of the screen. The computer is asking you
if you want the characters on the screen to continue to
“scroll” upwards to fill the screen again because the
program has not finished RUNning. In fact it has no
end at all. To clear the screen press the N key. A
message will then appear:

D BREAK — CONT repeats 10:1

Pressing any other key just makes the scrolling
continue. Once this message has appeared, you can
then LIST or erase the program with NEW.

B
CORRECTING MISTAKES

Computer programming is one pastime in which
mistakes are unavoidable. Programs very rarely work
satisfactorily first time, and the longer they are, the
more difficult it is to get them right. It’s important o
realize that making mistakes and correcting them is
often an interesting part of program development. So,
don’t ignore, hide or gloss over your mistakes — they are
an invaluable aid to learning how to get things right.
For instance, in a computer program you cannot alter

what you have written. As you saw on page 19, it will
have drastic results. To the computer, punctuation
means something very precise, and if you get it wrong,
a program may not work.

You can change a line in a program in two ways.
First, as you have seen, you can simply retype the line.
The new version automatically replaces the old one 1n
the computer’s memory. However, if there 1s very little
wrong with a line, especially if it 1s a long line, it’s a
waste of time to completely retype it. The alternative
way of making a change in this case is to use the cursor
keys to edit on screen.

Editing on the screen
Editing involves using the four keys with arrows
printed above them and the key with EDIT printed
above it, all on the top row of the keyboard. Here is a
program that needs editing:

B PROGRAM BEFORE EDITING

"HEATHROL , L. OO e g =
JAFK HELW “YORE
"0 HARE ; CHICHGDO"

"CHRRLEZ DE GRUI-LE,

Lo correct line 40 in the program to read:
40 PRINT “CHARLES DE GAULLE, PARIS”

you could retype the line. But try using the screen
editor instead. First, type in the program and RUN it,
Now LIST the program on the screen. Press the CAPS
SHIFT key together with the key on the top row of the

punctuation without completely changing the sense of

keyboard with a downward-pointing arrow (not the
exponent key featured on page 16). The = symbol at the
beginning of the last program line moves to line 10, Use
the downward arrow to move it to the incorrect line,
Now press CAPS SHIFT and EDIT (top row). The line

marked by the = appears at the bottom of the screen:
' PROGRAM DURING EDITING

192 PEINMT "HERATHKEQL ;

20 PRINT “"JFK, HNEW

3@ PRINT “0°HARE, _

4Q:PRINT ‘'CHARLES o
ROME "

“"CHRARLES DE GRULLE,

You can now use the left- and right-pointing arrow keys
on the top row to move the cursor to the end of the
section to be deleted, after the word ROME. Now press
CAPS SHIFT and DELETE (top row) repeatedly until
ROME disappears. Then simply type in the characters
that are to replace ROME. Finally press ENTER. It
sounds complicated, but once you've tried it, it soon
becomes second nature.

You will frequently want to add lines to a program
after you have written the first draft, Perhaps you forgot
to put CL.S at the beginning to start the program off on
a clear screen. You do not have to edit any line numbers
to do this. In the above program, for example, you can
enter the new first line by typing:

5> CLS

As the computer executes BASIC instructions in line
number order, it doesn’t matter that this line was added
last — it will be carried out first.

First steps in bug-hunting

Mistakes in programs are called bugs, and the business
of getting rid of them, debugging. As you have
probably discovered, the Spectrum helps a great deal in
debugging programs by examining what you type in for
errors in spelling and grammar or syntax. Ifit finds any,
it alerts you in two ways. First, if it comes across
something that doesn’t make sense in a line as you are
typing it in, it will not let you ENTER the line. Pressing

b T A T SR

ENTER will have no effect, and second, a question
mark will flash next to the suspect part of the line,
giving you a chance to correct it.

However, even if every single line of your program
makes sense to the computer, the program may not
RUN properly. You may have inadvertently told the
computer to do something impossible — to add two
numbers, A and B, when you haven’t given A or B
values, for instance. It responds to this by displaying an
error report on the screen, You came across one on page
14 — 2 Variable not found, 0:1”, In fact, the Spectrum
can display over 25 different reports.

Each report begins with a number or letter (0-9 or A—
R). The report itself is followed by something like 30:1.
This means that the program has stopped at line 30.
The *“1” indicates that the error is in the first statement
on the line. (As you’ll see later, it is possible to write
more than one instruction on a single program line).
Here are some slightly more advanced programs which
will not work. Try checking the error reports they
produce on the table that follows them:

L == = e xmriza o=

“BUGGED” PROGRAMS

T? =209 STEF 1@

= B |

IHMPUT "“Enter number
FOR =1 TO 1=
PRINMNT THB S;r; "
HEXT g

3

:
:.l.l:a.:-l-21r; 25

~ ERROR TABLE

These are some error reports that you may encounter when writing
your first programs,

Code

Report

Occurrence

B

(x

OK

Variable
not
found

COurtof
memaory

Out of
SCreen

Number
too big

Invahd
argument

Integer
out of
range

BREAK-
CONT
repeats

MNoroom
for line

BREAK
into
progrim

The “correct” report. The computer has found no
Crrors in your program.

You have programmed the computer to do something
with a variable without first defining it, This may
occur if you miss out quotation marks before and
after a string (see page 14).

All the available memory has been used up. With the
48K Spectrum this is unlikely to happen unless you
try to combine a number of long programs with
consecutive line numbers.

Your program has tried to INPUT more than a
screenful of lines, or has tried to PRINT below the
bottom line (see pages 15, 24-5),

A calculation has produced a number bigger than the
computer’s limit of 10™ (see page 17).

Your program has followed a function with an
“argument” (the number on which the funcrion is to
operate) which cannot be used - for example SQR
followed by a minus number (see page 17).

Your program has produced a number that is larger
than the limit that the computer can use for a certain
operation. This often occurs with graphics (see
page 28),

Appears when N, SPACE or STOP is pressed in
response to “scroll?” (see page 21). This report also
appears if BREAK is pressed while the computer

i5 doing something other than carrying out a program
- for example, LOADing a cassette (see page 60),

‘The computer’s memory has been filled, and there is
no room for the line that you have just tried to
ENTER.

Appears when the BREAK key is pressed while a pro-

gram is RUNning. The line and statement numbers
which follow the report show the last line to be
carried out, Pressing CONTINUE will make the

computer carry on from that poinr,

COMPUTER CONVERSATIONS

In all the programs you have written so far, you have
given the computer a set of instructions and left it to
carry them out. Each program has had just one
outcome, which was exactly the same every time the
program was RUN. But few real programs are like this;
in a games program for example, the players feed the
computer with new instructions every time the game
RUNs. The computer takes in these instructions
during the course of the game, changing the display in
response to the input of information.

Indeed, it 1s difficult to write a program of any
complexity without being able to interrupt the program
while 1t is RUNning to feed in new information.

The BASIC word INPUT is intended to deal with
this situation. It lets you carry on a conversation of sorts
with the computer — you “talk” to it through the
keyboard and it “talks” to you through the screen.

The INPUT command makes the computer
remember information typed in on the keyboard, and
gives it a name — a numeric variable if the information is
a number, or a string variable if the information is in
string form. The information is then used later in a
program. Here is an example of INPU'T at work:

i USING INPUT

1@ CLS

28 PRINMT "What 15 YouUr hame T

S8 IMNPLUT NS

difi FRIMNT "##%*f###*#F*FFT2FT 220095 %
U R T

E8 FRINT "“"&X SPECcLrum Progr &5mm
gd by “InhiE

GO PRIMNT "6 sssrsssssrprzsn
FEFEEFEEFEEES

Questions from your computer
The program instructs the computer to display the
question “What 1s your name?”, Line 30 then stops the
program, leaving the question PRINTed on the screen.
‘The computer is waiting for new information from you.
There’s no need to hurry — there isn’t a time limit. The
computer will wait forever or until you type in the
information it needs. Type in your name and press the
ENTER key. The program continues.

The INPUT line of the program takes your name and
labels 1t with the string variable n$. The dollar sign

shows that the computer has been programmed to
expect a string. This program i1s similar to the one used
on page 20 as an example of LIST. You can see from
that earlier program that INPU'T can also PRIN'T:

COMBINING INPUT AND PRINT

i@ CLS
28 INPUT "What is= YJouwur name”.n

. T8 FRINT "33 2433 T2 FEFEEFFTFFF
EELE ELEEEZ L™

df FRIMT “"Z< Spectirum Programm
ed by "in%

50 PRINT "4#8433 3588488000088
A EFEFEFEERE

Programming multiple INPUTSs
Many programs use INPUT a number of times to
gather different items of information, It is quite easy to
do this. All you have to remember is that you will need
a separate variable for each INPUT. Once you have
given the computer the information that each variable
will label, it can then use the variables in a program,
In the previous program, n$ was used to label a string
— in that case it was a name. But a string doesn’t have to
be just letters, it can be numbers. If you label a number
as a string, the computer will deal with it as a string.
Here 1s a program that does this:

MULTIPLE INPUT PROGRAM

oL
PRIMNT AT 2,:9: "Ent&r name*™
; INPUT n#
FRIMT HT S9.1;"Enter today-*s
date OO 80 5@
5 IMPUT A®
AT 8:;6; "Enter time 0aA

LH
AT P MEM SREesftrUun B
AT BTy YIS, on

AT
=T
AT

In line 100, the computer PRINTs d$, which is the
date. If the variable had been just d, the computer
would have taken the date’s oblique lines to mean
“divide by”. As a string, d$ is left unaltered:

MULTIPLE INPUT DISPLAY

ZX SPpecirum pProgcamming

bd Feter on 121084

Using INPUT with numbers

Because you can use INPUT to gather numbers as a
program is RUN, this command has many practical
applications. Consider, for example, the pmhlem of
converting Iengrhs sizes or welghts from one unit of
measurement into another. The conversion is always
the same — 2.54 centimetres to the inch, 2.2 1bs to the
kilogram, 1.76 pints to the litre, and so on — but the
numbers in each new calculation are different. Here is
a simple conversion program for you to try out:

~ INPUT CONVERSION PROGRAM ;

1@ CLS
=2 PRINT AT S.&8; "
ogr-am"
3@ PRINT AT 10.0;
157"
40 INPUT p
=@ PRINT AT
AL, 78

CONYyeErsion pr

"How manw pin

A @ pi

Fints=" g
Litires"

The program asks you how many pints you want to
convert to litres, waits for your response, does the
calculation and then displays the result on the screen.
Because the INPUT line is expecting a number in
response to the question it asks, the variable it produces

is a numeric one, p. This labels the number you key in
for use later on in the program.

Next 1s a program that asks you for two pieces of
information, and then uses them with the command AT
to fix a point on the screen:

USING INPUT WITH AT

INT AT 5.5

MT AT 10 ,6;
F {@=R1)'*
INPUT r
PRINT AT - 1%
numba & 1 &=
IMPUT cC
CLS

PRIMT HT & ,C&) ""x'

"MafPFiLing

-
=

"@i1ve

HETD 10
D ar
= e

&

E R
=

=, 8, "Eive me
31]"

_
=
mEm#DWﬂUH

2lgacongn

If you RUN this program, you will find that it asks you
for a row and column number and then PRINTs an X at
the position specified by your co-ordinates. The letters
r and c are just labels, numeric variables waiting to be
given values. It is these values that you key in when the
| program is RUN,

You can shorten this program by making a single line
with one INPUT statement collect both these figures.
Iype in each number followed by ENTER:

COLLECTING TWO VARIABLES WITH ONE INPUT

18 CLS
BE FRINT AT S5.5; "HMapping
Creen”
o8 PRIMNT AT 1&,6; ¢
W ndgmbeer == L]
Loy ks (D ="37]1 "
@ IMNPUT r.cC
=2 OS5
EB PRINT AT ¢ ,C, =

The =]

Five me 5
and]

'
COo Lumn

All the spaces between “and” and ““a column™ may look
rather strange to you. If you don’t put them in, you’ll
find that the message PRINTed by line 30 is split
awkwardly between two lines. The extra spaces bring

the whole of “a column number (0-31)" down to the
middle of the next line.

N e

B
WRITING PROGRAM LOOPS

Computers are extremely good at doing lots of simple,
repetitive jobs very quickly. But if it is to do anything
involving repetition, the computer must have some
means of carrying out the same program or part of a
program repeatedly. There are several ways of writing
these program “loops”. On page 21 you came across a
loop using GOTO. Here it is in a slightly more complex
loop produced by the same method:

NEVER-ENDING LOOP PROGRAM

T [t e el el el sk L R e T R P 1T
SRR UUNNYERrERrEOR R D
B RE

100 = S T R B O B g & RO
10

b= T

L]
1
=
|
.
:Ll
5]
r
=
=
%]
1
=
C

(]

If you RUN this program, you will quickly see the
disadvantage of using GOTO alone - the program is
never-ending, When the screen has filled up with
figures, “scroll?” appears at the bottom to show you
that the program has not finished yet.

If you press most keys, the display will continue. But
if you do let the loop continue scrolling, there is a way
that you can later exit from the program. As you saw on
page 21, pressing the N key will break the loop. Using
BREAK will also do this, producing a line number:

"BREAKING INTO A LOOP

FUlN=aa0
DEEQRARD &

'I-jl-‘.-—"Hl-—".-—"l—":—"l."
NEQODA0 e

b= -
~J i (|
i
i

=
10
ol
0&

A6
43
43
a3
44
45
a4 6
[s
45
49
5@
ol
L= =

MR R = e

~J 0O L) = S
20000 =R
E ppORpaDRO®

r
o
n
m
b1
~

1 LD

0
L1
il

Note that in this loop program, line 50 does not point
back to the very beginning of the program at line 10. If
it did, x would always be equal to 1, and the screen
would clear each time the first line was PRIN Ted.

How to stop a loop

T'he solution to these endless programs is the FOR ...

NEXT loop. This allows you to set limits on how many

times the program is carried out. You can adapt the

GOTO program to use FOR.. . NEXT instead:
i FOR...NEXT LOOP PROGRAM

The FOR ... NEXT loop both improves the program
and shortens it by one line. Note that you don’t have to
include LET x= or add 1 to x on each loop of the
program now, because FOR ... NEXT takes care of 1t
automatically. It starts off by setting x equal to 1 and
PRINTIng x and x-squared, Line 40 asks for the next
value of x and so the program re-starts from line 20, the

s e

beginning of the FOR ... NEXT loop, and executes the
intervening lines once more. This continues until x has
a value of 21, the maximum set by line 20, and in this
case, the program stops.

If necessary, the loop can be interrupted on each pass
through to wait for new information. Try using INPU'T
in the middle of a FOR ... NEXT loop:

FOR...NEXT WITH INPUT

i@ FoR n=1 T B

28 CLS "

e PRINT AT 5.5 "Temperature ¢
onvwersion"

480 PRINT AT A2 @) "Tupe in & Fa
krénheirt ftemperatirse"

E@d IMNPUT T

B8 FPRISNT AT L4 ,&; L "
t=""; [L=02) «8 9; " =

760 PAUSE 200

g5@ MEXT N

This program converts Fahrenheit temperatures into
Centigrade. The FOR ... NEXT loop beginning at line
10 sets a limit of five calculations, after which you will
have to RUN the program again. The INPUT
statement at line 50 stops the program until you type in
the Fahrenheit temperature you want to convert. Line
60 then does the calculation and PRINTSs the result.

Slowing a loop down

One problem you may encounter when writing
programs is that they often RUN too fast for you to be
able to follow anything which is PRINTed on the
screen. Line 70 in the temperature conversion program
is used to deal with this problem. The command
PAUSE stops the program temporarily so that the
result of the conversion stays on screen long enough for
you to read it before the next run through the loop
begins and the screen is cleared. The length of this halt
is set by the number following PAUSE. This number
represents the length of the PAUSE in fiftieths of a
second, Hence PAUSE 200 interrupts the program for
200/50ths or 4 seconds whereas PAUSE 0.5 is just
1/100th of a second.

How to round numbers off

The layout of the conversion display could be
improved. It’s fine as long as the result of the calculation
is a whole number, but it rarely is. The more figures
there are after the decimal point, the further
“Centigrade” is pushed along the line until it splits and
part of it ends up on the next line:

TEMPERATURE CONVERSION DISPLAY

TEmMPEraiUre COnNYeErsion

Tupe in a Fahrenheit temperature

EE Fahrenhegirtislg. JddsIdad CeEntigra
=

To get around this problem, try replacing (t—32)x5/9 by
INT ((t—32)%5/9+4-0.5). INT, short for INTeger, turns
a decimal number into a whole number. If the result 1s
18.333333, for instance, adding IN'T changes that to
18. The number is more sensible, and the display looks
much better:

ROUNDED-OFF CONVERSION DISPLAY

TEMPEratuUre coOnRvErsion

TUpe in & FERhrenheit TEempeEraiufre

&5 Fahrenhegi tmls

=ERtagrade

When you use INT, remember that it always rounds
downwards to the next whole number. You may have
wondered why the INT line has 0.5 before the last
bracket. This is to ensure that INT always produces the
nearest whole number. Adding 0.5 will achieve this, If
you are confused by this, try keying in these two direct
commands:

PRINT 3-1.1
PRINT INT (3—1.1)

The result of the first is 1.9, and the result of the second
1. But 1.9 is much nearer to 2 than 1. So, to compensate
for this in the temperature conversion program, 0.5 is

added before INT is used.

EET T T [

THE ELECTRONIC DRAWING-BOARD

The ZX prLLrum s BASIC includes several commands
for drawing points and lines on the screen. If you want
to draw a point or line, you must have some way of
telling the computer where to start drawing. The screen
is, therefore, divided up into a grid, made up of tiny
dots. These dots are called picture elements {u&.udlly
shortened to pixels) because the picture on the screen is
made up from them. Each pixel is numbered — 0 to 255
across, and 0 to 175 up and down. The 0,0 position is at
the bottom left corner of the screen. The co-ordinates of
a point on the screen are always given as x,y, with x (the
number of pixels across the screen from the left) first,
followed by y (the number up from the bottom of I_hL
screen). On the screen below, each grid square is 8
pixels wide and 8 pixels high:

~ GRAPHICS GRID

Unless you tell the Spectrum otherwise, it assumes that
you want to start drawing from 0,0 (also called the
“origin”) or from the last position visited. You can make
a point appear on the screen by using the Spectrum’s
PLOT command. To make a black dot appear at the
centre of the screen, type:

PLOT 128,88

You can check these co-ordinates on page 61.

How to draw lines

Lines are drawn on the screen using the command
DRAW. For instance:

DRAW 128,88

DRAWS a line from the bottom left corner of the screen,
the origin, to a point in the middle of the screen. If you
then instruct the computer to DRAW a second line, it
will automatically start DRAWing from wherever the
last line ended. You can use this to your advantage to

produce simple, straight-line shapes very easily. Here is
a LISTed program that produces three lines, together
with the shape it DRAWS:

MULTIPLE LINE GRAPHICS

ia DRAV Z28a ., 158
2@ DRAW 4d, -5
20 DRALY -240 ., -100

Line 10 DRAWSs a line from the origin at 0,0 to 200,150,
T'he next line is to be DRAW from 200,150 to 240,100,
The changes in the x and y co-ordinates are 40 and —50
respectively, so line 20 is therefore DRAW 40, —50.
Finally, line 30 DRAWS the third side of the triangle
from 240,100 back to the origin.

Picking a starting point

To DRAW a shape in the middle of the screen, you must
tell the computer that you want to start DRAWing from
somewhere other than the origin at 0,0. The PLOT
command takes care of that. First, PLOT a point where
you want to begin DRAWing. Now, the next line
DRAWn will begin from that point:

USING DRAW WITH PLOT

IO R L0
E205988

How to fill in shapes
It is now a simple matter to fill in these line drawings to
produce solid black figures:

SOLID RECTANGLES WITH FOR...NEXT

This repeatedly DRAWSs lines from the top of the
rectangle down to the bottom, gradually working from
left to right, generating a solid black rectangle. A solid
triangle is produced in a different way. The lines are all
DRAWN from a single point, one apex of the triangle:

SOLID TRIANGLES WITH FOR...NEXT

-

< DODXDOD
ST e e

LZOTORZ0TN
moromnr

Now let’s try something a little more ambitious. In
addition to points and lines, the Spectrum can generate
a number of graphics characters that are permanently
stored in its memory. You can see them printed on the
tops of keys 1 to 8. The largest is a square the size of one
character, while the others display halves, quarters and
other fractions of squares. Using these characters is a
simple way of generating graphics, but it produces onjy
coarse 1mages, and, since each character can occupy
only character positions, only jerky ‘movements are
possible when you come on to animation.

Selecting them involves switching to the graphics

cursor. IFor instance, to make a black square type:
PRINT “m”

To produce this, before pressing key 8, switch to the
graphics cursor by pressing CAPS SHIFT and 9. Now,
holding CAPS SHIFT down, press key 8 to produce the
character. Before continuing, press CAPS SHIFT and
9 again to remove the graphics cursor, You can produce
the inverse (negative) of any keyboard graphic by not
using CAPS SHIFT again when pressing the symbol
key. So, to summarize, the sequence of key presses
needed to produce the black square is:

CAPS SHIFT and 9
CAPS SHIFT and 8
CAPS SHIFT and 9

DRAWIng a simple landscape

The following program shows you how you can use
these graphics symbols together with the PLOT and
DRAW commands to produce a basic landscape:

USING KEYBOARD GRAPHICS

FoR r=1% TaO =
FOR £ml TO ™3
EFRLMNT = e
MEXT <

MEXT &

FoR= g = T

PLOT 46 6 BE

o=l =0 e, d

MEXT

TP e ot i e o e o e o
alu B Tl A A EOTY o T
Al STl el sl alafol afals

1
I

DESIGNING YOUR OWN CHARACTERS

You can make up almost any shape of graphics
character by using PLOT and DRAW as described on
pages 28-29, However, it is much more convenient if
you store your own graphics characters in the
computer’s memory in the same way as it stores all of its
own keyboard characters. You can then treat a graphic
symbol — a rocket ship or a human figure — as a single
character, instead of having to RUN a special program
to DRAW and PLOT the symbol each time you need it.
The Spectrum allows you to program the A to U keys
with any graphics symbols of your choice.

How to use a character grid

Say you want to put a small rocket on the screen for a
space game. The shape will be shown on the screen as a
pattern of dots on an 88 grid, so draw one out on an
8 % 8 grid on a piece of paper, as on the diagram below,
or use the grid on page 61.

Draw the shape by blacking in whole squares. When
you have done this, add up the numerical values of the
squares in each row. On the top row of the example,
only one square, the one with 8 above it, is blacked in,
so the total for the top row is 8. In the next row, the
squares labelled 4, 8 and 16 are black, so the total for

ROCKET PROGRAM

CCCCCC
NINNDDNNIN
i e
1+ e

N 4= CAN0Es0
L B0 O
(I 0 000 8 3 PO

O R VR CR R DA N
=]

E-JRA&akE
CL089000

3

=

Now you need a way of getting your character back out
of memory and onto the screen. The PRIN'L statement
is used. To PRINT the newly programmed character in
the middle of the screen add this line to the above
program, first changing to the graphics cursor, and then
repeatedly pressing the A key: '

row 2 is 28, and so on. These totals can then be fed into
the computer to reprogram one of its keys.,

POKE is a command which allows you to put
information directly into the computer’s memory.,
USR*“a” in the following program tells the computer
that you want to recover your character by pressing the
“a” key, (Using a capital A would work equally well).
The number following (+1, +2, etc) identifies which
row of the 8 <8 grid the final number refers to. Eight
lifies of the program are necessary to install the new
character, working from “a” through to *a”+7. Here 1s
the rocket and tie program that stores it:

Individual square values
128 64 32- 16 B & &

90 PRINT AT 15,8;“AAAAAAAAAAAAA”

e re—— et

ROCKET DISPLAY

I FFSFSIFEFE S

(R RIS O - RowTotals
— 5 =8
16-+8+4 L By switching to the graphics cursor, pressing the A key
194842 - 42 repeatedly, and then removing the graphics cursor
again as described on page 29, a row of the character you
64+16+8+4+1 = 93 have designed is entered in the program line. Then just
RUN the program.
16+8+4 = 28
16+8+4 = 28 HU‘W (4 add characters tﬂgEtl’IEr
The first thing you will notice is that the rockets are
32+16+8+4+2 = 62 ux[rcmc[}r gmall. Have a Iry at Smnething larger:

64-+324+ 1648
+4+241

Ly [. R |

e —

Row
fnfalssts O} 92 18 3 ¢

19
22

25

MULTI-GRID CHARACTER
S T

Row

t 1 touls

200
200
242
218

202
2310

LT

CCCCH

= =
CC

=

Bttt i

o P T e

.

INDI-0DDDN0T0D0

el

= = e
o

CCCCC
TN .'I-HD-EI-'--'I-I-IJ-'-I:I-'-:I.IEI I'J-
=
L

GRoneEne

= AT (]

E N T Tl o] Loewhcng

cC

o b

o

0000 = J o e 0 P 1D
el olalalalalobalaf o] o)

— MUDTOOD
J 000000
. s =

BRI

e e e
310

om

0=

GSs
nDa-Dnnan

CCC
18 AL I T 0 o T W

ad

LE AR DN RAEN e

Rt e T

Lok

]

el el Pl
=

&
=

e

e) T 1 T

= .
R A

D=+ D00

TUDODODNTDTOTM
NEEMnm

0000000000

il
1]
AEAFEXEEEHAREE

ZMmmmmmmmZmmen

= PO T PO v B

=
i

SEGRLFIEEAETRD
CCCCCLC

(RTETRTATRTRTA Y] (W] 00 Y (PR])
ORLGNPISOR-IOEEG

DA AENETD
L E R R
SR 101 R TSNV

o
no
HA
-l

Although user-defined characters are based on an 8 X SQ&
grid, there’s no reason why your character should not
cover more than one grid.

Again, key in the totals representing each row in each
8% 8 grid. Each grid must be labelled with a different
keyboard letter to identify it. In the program that
follows the new rocket, they are labelled with the letters
1, 8, d, and {.

Screen patterns with POKE USR
With user-defined graphics it 1s possible to use your
own characters to make a pattern by PRINTing them
all over the screen. In this program, try filling in the
zeros in lines 10-80 to define a character (the grid on
page 61 will help you with this). Instead of giving the
character a fixed position such as in the above example,
the program will PRINT th-: character AT r,c where r
(the row number) and ¢ (the column numhm} are
constantly changing. Here is the program and a display
made by replacing all the zeros in lines 10-80 with
195, 231 126,36,36,126,231,195:

"PATTERN GENERATOR PROGRAM

O£ L

E6O5E
mmmmmmmn
0
WAEEGN =S
EREGLREAE

=J
]
ATMODNTODOT

™

QoOo000000
DEXRIEAEEFR

CRREE R R

= 00 =
i (IR

R G0d-
o
T

GaLog

1
1
1
|

2

-
TE g b] ! il e o
R RRRRALRRE :1:r:+-r-:r-r-*-*-f-z-f-f-*-m-'-ﬂ:
: R RN R AR R KR H AR A KK R KR KA
1 i ‘i' 'I' i..-n..h-h-.-.-rt;-i;t"'-"itﬂ"tEiIiItItI*I'h!'hE'I'I‘h ol
8 I' 1 5 1‘!"‘ I‘III‘ "i‘:‘f":!:i:;:ﬂt'itw g‘i‘:‘i‘:i:i‘:‘i‘:i:i:;:{:’

:"':*:;lil':?:ﬂi:i:':t:’l?izizlzitill ;I i-. ;i ;i ;i 'i ;i ; Lol
ifi‘i*i;j;t;’;l:j;i:};l;t 1!Fi?ij;ﬁij+'iﬁii Iipwglplyipillii

- s e o e e e L e o
t.r:'r:f“ﬁ:r:ﬂr:ﬁ. fofefetetetedetetatotatetedotolodolatole!
L l-ri-i-l-i;i-iq Liip;i;-rr » :—-:I:':’i':':i:;:ﬂ?:!ﬂ-f

TeTalatalatar
ﬁr‘ﬂ;:t:t:ﬁ,:;i: Sfefotstetotefotodotetetatosetasotetornt

L] . ' - -_-‘-'
I.-I..I.- :I.I.. .I..f..:.‘l’..l‘.‘l’t'i P :i:i‘i‘*‘ e : - :!:E:?:f:!-i..'
I s st e et) '*1;'*‘*1;':.:‘:':‘ L .'l'l.ti"l -'F-F‘I".'F.

. A . A . L N
00 20 0 2000 2 S o X R0 R R R

o B L B

o S R e

ANIMATION

Once you have learned how to create a character and
make it appear anywhere on the screen using PRIN'T
AT, you can then attempt some simple animation by
using the same method to make the character move.

First, you need a program that produces a character:
STATIC CHARACTER '

.

i
1 10 o0 0 A0 R 0 (R P PG 0 15 P

Naperoooen

CCCLCLC

(8 G 8 (A U0 (B
b bib i bbb
g

i f]

T 1T i B

CCt

= s B

AEQR=G0E~JRRADN
CECALEIGREC08EEE
YOO DUDDDODTUTOTT
DoOO0000000D00000
EEEFFEFEEFRAREE
I M MR M m mmmmmmmmm

R

e
o

" wh

PORE
FRIKNT RT
PRINT AT

"

- 0D

BEL £+ 4d4e bbbttt
A0~ e D~ RO R G

R S e e el e el (i —
110 o o o T T e e 1 e R

-
@-J
e85

-
wew

% L | L

1836G: 1

This program creates an “alien” with two graphics
symbols by reprogramming the Q and R keys.
Together, the symbols make up an alien in the middle of
the screen. Line 170 tells the computer to PRINT the
top half of the alien AT 11,15, while line 180 uses AT to
put the bottom half in the right place.

Now you can try making it move from one side of the
screen to the other. You will be relieved to know that
lines 10 to 160 inclusive remain exactly the same, so
don’t press NEW before making the following changes
or you will have to type in the whole of the program
again. There’s no need to delete lines 170 or 180,
because the new lines will replace them.

These lines and changes will start the alien moving (the
graphics symbols will automatically replace Q and R if
you have RUN the original program):

ANIMATION LINES

How to remove after-images and control speed
When you RUN the modified program, the first thing
you will notice is that it doesn’t do exactly what you
want it to. The Spectrum moves the alien from left to
right, but as it moves the alien, it doesn’t remove the old
images. The result is a long line of characters:

DISPLAY WITH AFTER-IMAGES

e

The problem is that you haven’t told the computer to
remove the old unwanted images. Doing that is quite
easy — just PRINT a blank space after each of the
characters with these lines:

205 PRINT AT r.e=1: ~
206 PRIN'T }_".L'l"r-r e !__;“_ ~

AT A R e R L T A

A e [T

The alien now moves from left to right without leaving
a trail, But it’s very fast., How can you scale down the
speed? Put in a time delay:

207 PAUSE 2

Now the alien takes longer to reach the right side of the
screen., You can adjust its speed by altering the PAUSE.
This screen shows an impression of the movement (the
after-images will not actually appear on your screen):

ANIMATION WITH DELETIONS

You will find that the slower the speed, the more clearly
the alien appears on the screen. Flickering occurs when
a symbol i1s moving quickly, or if it is made up of a
number of characters. With a two-character symbol like
this, there i1s a slight tume delay between the computer
PRINTing the first and the second character. If you use
more than two characters to make up a symbol, the
flickering as the symbol moves will be more noticeable.

Movement up and down the screen

You can move something down the screen from top to
bottom, or vice versa, equally easily. Instead of varying
the horizontal position (shown by the changing variable
¢ in the alien program), you change the vertical position
by the same method.

The next program stores a symbol representing a
small rocket under the A key, and then makes it fall
down the screen. The same sort of FOR ... NEXT loop
as was used in the alien animation is used here at line
140, (FOR...NEXT and other program loops are
explained on pages 26-27.) The r (row) variable
increases so that the rocket is PRIN Ted at progressively
lower positions.,

‘To make sure that the rocket does not leave a trail, the
program PRINTs a blank space behind it. Because this
program uses a symbol only one character wide, only
one blank space 1s needed. To give the rocket something
to hit, lines 90 to 120 PRINT a simple landscape with a
horizon, just like on page 29. Line 190, which is only

carried out after the FOR ... NEXT loop has been
completed, PRINTs five graphics characters (ones
found on the number 6 key). This line produces the
impression of the rocket’s impact:

ARROWHEAD FALL PROGRAM

v s §

a0 R =10 01

fagoNG
e dedi)

- ow

T

i

= = om m o® omom
-

DD i i B

Fd
S0 Mo
- e
rNE =nQ
-
-

mn

GDNIADIID

=

(I T

5 | CCCCCCC

mmnsé-nnpmmmuuumm
I =N o TR

il UL & o e

_I

L0CS0CEE9889059
=

e e
EUDRSOE-JD0es 0=
-1

i~
>

o e ot
Ip Q-
EE22E

PHLIMHT

:
;

R S e R S A

B

The Spectrum’s television display is not limited to
black letters and symbols on a white background, It can
actually PRINT in any of eight colours (including black
and white) and you can insert these colours in your
programs. Each colour is identified by a number.

If you look at the number keys, you will see that keys
1-7 and 0 have a colour printed above them. To pro-
duce a colour on the screen, you need to use one of
these colour codes together with a colour command.

Using colour commands
The Spectrum has three ways in which you can control
colour. INK (on the X key) controls the colour of text
PRINTed on the screen. PAPER (on the C key) selects
the colour of the background, and BORDER (on the B
key) controls the colour around the edge of the screen.
1o select a colour, you just have to key in one of these
commands followed by a colour number.
To see what colours INK produces, key in this colour
chart program:
e INK COLOUR CHART PROGRAM

@ BORDER ©: PAPER ©: CLS
FOR 1 =9 T i
L i
26 PRETNT i . -
) e i |
T 1111 . ..
&0 FRIMNT
TE MNEXT i

Lines 20 to 70 contain a FOR ... NEXT loop which
PRINTs a row of graphics characters (on the number
keys) in each of the INK colours from 1 to 7. The
program PPRIN'Ts all the colours except black:

Each colour command is fu]luwgd by one colour number.

Nl_]__mh er Colour

() Black

Blue

INK COLOUR CHAR'T

"L L T T T T T T YT TITT*T T

T 4
. 2 5 R R R R B B B 0 BN 0 B OB

INK 8

L

Line 10 makes the PAPER and BORDER areas turn
black. You will notice that the line contains the
command CLS. This is to ensure that the PAPER area
15 black before any text is PRINTed. Normally, the
PAPER command only produces a coloured
background i1mmediately behind each PRINTed
character. To colour the whole PAPER area, you must
follow the PAPER command with CLS.

Changing INK, PAPER and BORDER
The next step is to see what happens when you use
different INKs together with changing PAPER and
BORDER commands. The following program does
just this; it contains three FOR ... NEXT loops, one to
control each of the colour commands. If you RUN ir,
you will see all the possible combinations of INK,
PAPER and BORDER (there are 512 altogether!):

BORDER/PAPER/INK DEMONSTRATION PROGRAM

1@ FOR b=® TO 7
ofm BORDER b

3@ FOR p=@ TO =

48 HFHFEERE B CLS

BB FOR 1i=s@ TQ 7

50 INM i

70 PRINT BT 1,11 N
60 PRINT AT 3.11; "BORDER *: b
2@ PRINT AT S.12; "PRAFER “;p
1908 PRINT AT 7.13: " INK g
110 PRIMT AT 9,11 "
1268 PRAUSE 2
1380 MNEXT i NEXT p: MNMEXT .

BORDER/PAPER/INK DEMONSTRATION DISPLAYS

TR ORI
BORDER 1
PRARPER &
IMNK 2

e,
BORDER 2
PAPER 1
THMH =

VTR

These two displays are produced by keying in the
demonstration program. When you are writing your
own program listings, you can work with any INK,
PAPER and BORDER colours just by keying a line 1n
(without a line number) before you start your listing,.
White on black, which produces an easy-to-read
display, can be produced by keying in:

INK 7:PAPER 0:BORDER 0:CLS

Pressing NEW will reset the computer.

Improving the picture
If you are disappointed with the television picture your
Spectrum is producing, you may be able to improve it
by going through some simple checks. Make sure that
the television 1s properly tuned into the computer’s
output signal. The tuning setting of both may drift from
time to time, so it is a good idea to check your television
tuning periodically.

[f the picture is covered by a herringbone pattern,
and you have checked that the television 1s properly

tuned, make sure that there is nothing nearby that
might be interfering with the computer’s signal — a
video recorder or another television set for example.
Finally, the more colourful and brilliant a picture is, the
more distorted it will seem to be. Try reducing colour,
brightness or contrast to improve this,

Colouring user-defined characters

If yvou define your own character with POKE USR (as
on pages 30-31) you can PRINT this in any INK
colour, Here is a program which produces a character —
a pair of small stars — and which PRINTs it all over the
screen in INK colours from 1 to 7:

E COLOUR STARS PROGRAM

" S|

m
cCA
|
N
-
o

TTOTUTTO
00000000

AAARLED
DR NDDE

e,

0

-
EMmEmmmnD
- =

ceee
CA 0 O DR
INDINDINE
NETE ST
mhpm MO &
BE -

FENEQ 00D
GGG EEReD
n
o
=
m

e b i s

TE 128

Experimenting with colour is simple. When you
become more adept at it you can begin to create new
colours by optical effects. For instance make up user-
defined characters from a grid of dots of which every
other dot is a second foreground colour. Now, colour
the background in a contrasting colour. Red dots on a
blue background for example will mix to appear purple,
while red and yellow will appear orange.

SR T v [

COLOUR GRAPHICS

Colour can be added to Spectrum graphics using the
same commands and technigues as are used to colour
text and user-defined characters. You don’t need to
learn special commands, nor to write a long program (o
produce simple colour graphics. Here, for example, is
the arrowhead fall program that you used for animation
on page 33. If you type in the program again, you can
then add some colour to 1t;

ARROWHEAD FALL PROGRAM

~ [

PORY R (s 1= U O

103D
EEoonNNO

-
el

ulll)

I LS

'a

e .

1 CCCCCCCC

TR O (3 e 0 808
() v iy 0 0 5 v O 0

B~

MIInn

=]
i it o P B
L2

R e b

-

=4
I
=

- r
| [

I DDx
£

7

Wi

DRI ZTANTT
NDDEe--

—3

=

IRDIDOMMDO0CO
Me=t=ie% v

I
|

_,.
r =

1
=
3
A
5
=)
T.F
(=]
7]
]
1
=
- |
il
=
&)
r
(=]
=

SEOGEEEEOGESE0ONEED

1
1
< |
1
1
1
1
1
€
o

X HH)
ralion 11|

T
=
i
—

Programming graphics colour
Now key in an extra line to the program:
85 BORDER 2:PAPER 1:INK 4:CLS
If you look at the colour codes on page 34, you should
be able to tell what effect the new line will have. Now
RUN the program. Here 1s the adapted listing
containing the new line:

R LULUUR ARHUWI IEAD FALL PROGEAM

A B OH LR DA AL R
M MIDNDINIDDD
ewonoww o
] e b e |
o B R (W
e v

Tooddodb b

DCCCCCOCC
a1

=

4AMKE d: C

E
o
DD-JOAELON=E0 U= & &0

CEGEE6O08S06 USSSESE6SS
P ST T EY I

]
D D+

e
s =)
bl [
|

e o 0 3 g
-

o)
A

You should find that the adapted program now
produces a red arrowhead, a blue sky, green ground and
red BORDER. When the arrowhead reaches the
ground, the graphics characters that show the impact
are now PRINTed in green against blue — because line
190 is also affected by the INK and PAPER commands
in line 85. Here is the coloured display that the adapted
program produces after the arrowhead has completed
its fall from the top of the PAPER area:

COLOUR ARROWHEAD FALL DISPLAY

Animated action in colour

You now have the basic expertise needed to write an
animated colour graphics program. As an example of
some simple colour graphics, here is a program which
brings together everything that vou have learned so far.
It is built up from a number of separate blocks or
“modules”, most of which you should be able to follow:

LASER ATTACK PROGRAM

189 DERTHE E:Edd 45,31 , 31 45 ,244 ,
28 DATH 0,158,588 ,254 , 25854 ., 558 .18 ,

20 DATA 14%,04 ,84 , 254 , 024 , 254,
Lad ;, &5

468 FOR n=G TO 7. READ =
FOKE USE “&a" +n ,;
NEXT n
FOR n=@ TO 7. RERAD X
FUKE UWak “s"+n ;K
MHEXT R
FOR n=@ TOQ 7 READ
PUKRE USH "9 +n0 ., X
MEXT N

DIeS0E-mm
n naEcehos

e T T v [e S

LASER ATTACK PROGRAM

PRIMT IMK Z2;AT 15 ;4; “}M"
= =

I o
- = BEEF @.02 . 12
FRINMT HT ¢ ,€3" *

mEFE .02 . 2

NEXT ¢ M

PLOT 4@ ,5S6: DRALK IMK 7138,

BEEF Q.1.4

CBRAL ITMHE 1;

FOR re8& T0O
1i

TS

1

BEEF @.8=2
A PREIMNT 9T .

GEEF ©.988 ;4
PRINT AT ;
BEEFRF Q.02 .3
LET Cc=C+1
NEXT r
PELIMT LMK

=26
SEa
e)
J=a
i 1)
el

=% 2% [
a0

|

i

[}

..ﬂ-

[
|
B
o e f = |

i

il
[T
1|
]
[|

s B

You will probably be puzzled by lines 10 to 30. These
lines are actually part of a quick way of producing user-
defined characters. If each of the a, s and d keys were
reprogrammed by the method we’'ve been using up to
now, it would take 24 lines — 8 lines of POKE USR
statements for each letter. Using this new method, each
key can be reprogrammed in a maximum of four lines,
with a list of grid totals stored after each DATA
command. The program uses three characters; two to
make the front and back of a rocket, and another one to
make a laser base.

The READ...DATA routine, explained on pages
5053, is a quick method of assembling all the data you
need to make up user-defined graphics. It enables you
to put all the data into one statement, instead of using
the POKE USR routine line by line.

Lines 40 to 120 then take the information that is
stored in lines 10 to 30, and turn it into the characters
themselves. The green ground is produced by lines
140-180, which contain a double FOR ... NEXT loop
that repeatedly PRINTs a green square across the
bottomn of the screen. Line 190 then PRINTS the laser
base.

[.ines 200 ro 260 control the movement of the rocket,
sending it across the screen at a fixed height. You can
see it on the top screen of the three in the right-hand
column. You probably will not need to be told that the
BEEP command produces the sound of the rocket.
(You will shortly be coming on to using this command
both for sound effects and notes).

Lines 270 to 300 program the laser to fire by
DRAWIng a line that hits the rocket (see the centre
screen on the right). Once this has happened, lines 300
to 370 send the rocket plunging to the ground, while the
final line PRINTS its crumpled wreckage. (In the final
screen on the right the rocket 1s shown without the
deletions which actually occur).

When you type in this program, remember that all

the graphics symbols are obtained by switching to the
graphics cursor (CAPS SHIFT +9) and pressing the
appropriate user defined key - a, s or d. Remember also
to remove the graphics cursor again before continuing.

LASER ATTACK DISPLAYS

SPECIAL SCREEN TECHNIQUES 1

As you saw on pages 32-33, it i1s possible to animate
characters simply by PRINTing, erasing and
rePRINTIing the characters in a new position. If you
want to take ammation displays a step further, you can
make use of two new Spectrum keywords INVERSE
and OVER. These allow you to produce animation
when the ordinary PRINT'ing technique will not work.

INVERSE 1s a command which switches over the
INK and PAPER dot pattern on the screen, to give an
effect which looks like the negative of a character.
OVER lets you PRINT one character over another, so
that the normal erasing that happens when you
overPRIN'T" does not take place.

INVERSE and OVER can be used to PRINT, PL.OT
or DRAW something over a background that itself has
something DRAWD or PRINTed on it. This program
shows what happens if you try to animate over a
background without using these commands. It DRAWS
a laser beam which fires across a grid:

LASER AND GRID PROGRAM

|
=

BORCER 1: FPARAFER 7. THKE @

FOR Y4=18 TO 188 STEP 24
PLOT 86 ,4y: DRAW 144, @ .
@.16: DRAW @, 144

K,
¥

I-
uh

ODDZMICr DOMr
ool

44
BHREHH +

BALA=F> FF P
o

H

1 e
T

15

I
1
1
1

—_
'_'h

280 GE2AS8888
Hea

0= 800~ iR &SR
Q0DDrVUDE
DIDO=0HHXD
el ==+

Q
1

e

Lines 10 to 50 DRAW the grid — a black grid on a white
background with a blue BORDER. Lines 60 and 70
PRINT a blue laser base in the bottom left corner of the
screen., Line 80 PLOTs a point at the middle of the top
of the laser base. This is simply a way of moving the
graphics cursor to the top of the laser base, to the point
where the laser beam will fire from. Line 90 produces
values for x and y, which are the co-ordinates of the
point to which the laser will fire — the end of the beam.
The co-ordinates are set at random by the command
RND (you will full details how to use this new on pages
48-49),

Line 100 DRAWS the black beam to x,v, while line
120 then “unDRAWS” the beam by DRAWIing it in the
background colour — white. Line 80 returns the
program to the beginning of the firing routine again.

The next two screens show the display as it 1s when
the program starts, and then as it 1s after the program

has RUN for a while:

LASER AND GRID DISPLAYS

UnDRAWing and overPRINTing
You can see from the second display that the program
doesn’t do what 1s wanted. Firstly, when the beam is
unDRAWnN, the parts of the grid that lie along its path
are also unDRAWnR with it. Secondly, and perhaps
more surprisingly, when each beam appears, so do the
parts of all the previous beams that pass through
character positions occupied by the current beam.

You could make the old beams invisible by adding

INVERSE 1 to lines 100 and 110 lhike thas:

100 DRAW INVERSE 1; INK 0:x.,y
110 DRAW INVERSE 1; INK 0;—x,—y

The problem now is that, although the images of old

beams are eliminated, so 1s the current beam.
Moreover, white squares still appear along the path of
the beam, erasing parts of the black grid. You could try
this instead:

100 DRAW INK 0:x,y
110 DRAW INVERSE 1;—x,—y

Now the beam will work properly, although its end
point remains on the screen when the rest of the beam
has been erased. The grid appears to be cut by white
lines where the beam passes through it. The answer is to
use OVER instead. Change lines 100 and 110 to:

100 DRAW OVER LiINK 0:x,y
110 DRAW OVER 1;—x,—vy

Now the beam works properly: it appears against the
background of the grid and disappears again, without
leaving any white cuts across the grid to mark its path.
However, the end point of each beam remains on the
screen. If this should fall on one of the grid lines, it
leaves a white dot, breaking the line. This happens
because even though the beam 1s DRAWnN along one
path and unDRAWn back down the same path back to
its start point, the computer doesn’t follow exactly the
same path in both directions. So, to solve that, DRAW
and unDRAW the beam along precisely the same path:

110 PLOT 16,16:DRAW OVER 1:x,y

Each beam is now DRAWnR and unDRAWnN from the
same start point (16,16) to the same end point (x,y).
The end points now no longer remain on the screen.
The program works perfectly. The beams repeatedly
flash across the grid and disappear again, leaving no
evidence that they'd ever been there.

OverPRINTing with graphics
Now you can try replacing the laser beam with a larger
graphics symbol, moving across a detailed background:

GRAPHICS WITH OVER

FOR J=Ea TO 178 STEPFP 1&
D ,d: DRERAE 22D, W
)

PRINT
R R L
PAUSE °

—
L

b
—
QU =

& OTE- 1

=@
A B
11@
128
15@
1d @
15
HT
156
17&
AR
1O
L&
20
(m] .

background, which forms a blue sky. Lines 60 to 90
DRAW a series of black perspective lines on the green
ground to help give the impression of depth. Lines 100
to 130 DRAW a series of yellow lines across the sky.
Line 110 controls their spacing as they are DRAWN
upwards on the screen. Lines 140 to the end of the
program PRINT a small aircraft on the ground and
then make it take off and fly up and out of the top of the
screen. Using OVER, the background is left
untouched. The moving symbol has no effect on the
lines previously DRAWN:

OVER GRAPHICS DISPLAY

To get some experience of using INVERSE and OVER,
try changing the colours in these programs, and
substituting PAPER colours for INK colours and vice
versa. Testing these commands in short programs will
soon give you ideas for using them in graphics.

When you do use INVERSE or OVER, remember
that they are commands which must be activated or de-
activated by the number that follows them. On their
own they will not work.

How to BRIGH Ten up your displays

As well as producing displays in seven different “real”
colours, the Spectrum can produce displays of different
colour intensities. The command used to change
brightness is simply BRIGHT. This is used in PRINT
statements in the same way as INVERSE and OVER.
To turn on extra brightness, you use BRIGH'T 1, and to
turn it off, you use BRIGHT 0. If you type in these lines:

10 BORDER 0:PAPER 0:CLS
20 PRINT “without BRIGHT”
30 PRINT BRIGHT 1;*“with BRIGHT™

you will be able to see the difference that this command
makes. You can also use BRIGHT 8. This enables you
to PRINT BRIGHT text without altering the original
PAPER colour in the position to be PRINTed on.

Lines 20 to 50 PRINT a green ground on a bll.m

N

| A e N R O S

SPECIAL SCREEN TECHNIQUES 2

Many programs rely for part of their effect on
characters that flash on and off. With the Spectrum,
you could make characters appear to flash by rapidly
changing the INK and PAPER colours. But don’t rush
to your keyboard to try this, because there is a much
better and simpler way to achieve flashing. The
Spectrum has a single command, FLASH, which
produces the etfect you want.

How to turn flashing on and off

FFLASH can have one of two numerical values, 0 or 1.
FILASH 1 makes a character flash, while FLLASH 0
stops 1t again. The next program will show you what
effect adding FLLASH has. First, type in the program
without FLASH:

PROGRAM WITHOUT FLASH

1& BORDER 1
LS

EFHFE®R 1. I

g8 FOR =x=1 TGO Vo4
2@ FPRINT "uw''.
48 NE = !

................................

11111111111111111111111111111111

..............

11111111111111111

nnnnnnnnnnnnnnnnn

1111111111111111111

...................

Line 10 sets up the screen with a blue BORDER and
PAPER, and white INK. The range of x values in line
20(1 10 704) 1s chosen because there are 704 character

positions on the television screen (22 lines of 32
characters). Now to make the display flash, add a new
instruction to line 10 to make it read:

10 FLASH 1:BORDER 1:PAPER 1:INK 7:CLS

When you RUN the program this time, the INK-
PAPER colours alternate, making the display flash. A
screen full of flashing characters is rather difficult to
look at, and, after a short time, you will probably want
to stop it. If you type:

FILASH 0

however, nothing happens. This is because the FLASH
command only affects characters displayed after it,
Instead, type CLS to remake the screen. The display
should now stop flashing.

FLASH can be incorporated in PRINT statements in
the same way as OVER and BRIGH'T. All these
commands can be used in one of two ways. If you now
remove FLASH 1 from line 10 and key in:

30 PRINT FLASH 1;"#";

you will see the effect this has. Of course, you need not
make the whole screen flash. In fact FLASH 1s a much
more valuable command when used selectively. Try this
display program:
R USING FLASH SELEEZLI‘IUEL‘E

-
AP

=41

e gy e
LR L

P g e e e

i wwww e

e 1:r..'.»;.'.¢_::.1'..:|'._'|:..i:."
Hisialtr i FLASMH 1.
Ll-l;llp:-l

1
[

- I."

LBl

=

_—

DEDDD
5T

] e [
S O et

r

ii]

o, ™

- B

=t T TR - e

I_
= _"L

=]
C
E
5
E
[=
E
I..
E
=
E
F
| i,

T

e e e T

q-i444 13-
TDOLNE

T

LETLE“HE I I = eEEe

Aelbolkil kel |

“Transparent” colour and contrast
Although the Spectrum has only eight screen colours,
you may come across expressions using colour numbers
8 or 9. Colour number & produces a “transparent”
colour. If you use PAPER 8 in a PRINT line, the
PAPER colour will be left as it was before.

Colour number 9 does the exact opposite. If you've
tried setting up your own colour screen, mixing the

available colours in different combinations, you will
undoubtedly have discovered that some colours simply
don’t mix well. In some combinations, text disappears
into the background, making it totally unreadable.
INK 9 is very useful for achieving perfectly readable
text first time. It PRINTs characters in either black or
white, whichever contrasts more with the background
PAPER colour:

—_—

INK 9 PROGRAM

i1 FOR psld TO 7
20 INK 9. PRPEER p
Gl FRILIMNT T = 8o
= — | B L

480 PRIMNMT

i R L] =

E8@ FRIMT

] =

E0 FHRLUSE

T HEXT B

Here a message is PRINTed against a background of
each of the seven PAPER colours. The INK colour is
chosen by the computer to contrast with the PAPER
colour. White characters are PRINTed against black,
blue, red and magenta backgrounds, but when the
backgrounds change through green, cyan, yellow and
white, the characters are PRINTed in black.

Overprinting without erasing

So far whenever you have PRINTed over text already
on the screen, the original text has been blotted out by
the new characters. However, this needn’t always
happen. The Spectrum keyword OVER which you met
on the previous two pages works with text characters as
well as graphics,

By using OVER, you can add characters together,
For instance, lots of German words feature something
called an umlaut — two dots above the letter a, o or u.

The Spectrum can generate accents, umlauts and
double symbols with programs that overprint text like
the first example in the three screens that follow. The
same principle can be used to underline words on the
screen, as you can see from the program in the centre
screen in the next column. The underlining characters
are PRINTed at exactly the same positions on the screen
as one line of words. However, it doesn’t, as you would
normally expect, erase the words — it adds to them. You
can see the result displayed on the bottom of the three
screens. ‘Iry taking out line 20 and see the difference
that it makes:

OVERPRINTING PROGRAMS

&: "HoLn'
= I B 1 B o R LD
R:"Societe"
AT 12,314, ""
HT 1l=2,18;"r"
y D "DOOD0000
T8 FRINT QOUE 1L:AT 14,18 V" ===

5
=

FRAFER &: BORDER &: IMHK 7: ©

OUER 1
FRINT AT

r
1]

;P OUErER LETS wou
PR AT ¢ s UHEGERL IMNE“
FRINT AT P B o
FEINT AT p WORBS DN O THE
<EER"

OMRE OB
lgse 568

(&

OUVER LET2 %YOu
LMNEFEBL THE
HORDE OM THE SCREEW

By using OVER, you can convert letters into graphics
characters, create foreign alphabets or, in games and
graphics programs, you can make a character appear on
top of a background line.

:
SOUND, NOTES AND MUSIC

The Spectrum can produce a wide range of sounds, all
under the control of a single command, BEEP. This 1s
accompanied by two variables — d (the duration or
length of the sound) and p (pitch). For instance:

BEEP 1,0

produces a beep one second long at a pitch of middle C.
The pitch of sounds is measured relative to middle C -
above middle C, p is positive, below p it is negative. The
Spectrum’s pitch values range from —60 to +69.
Increasing the value of p by 1 increases the pitch of the
sound by one semitone. A semitone is the change in
pitch between, for example, C and C#. Although d
represents the length of the sound in seconds, it is not
restricted to a whole number; fractions of seconds are
quite permissible.

As you can see from the table of p values below, you
can increase the pitch of a sound by an octave by adding
12 to p. You can play the full range of Spectrum notes
by RUNning the following program. It takes about 15
seconds to complete the scale:

PITCH SCALE PROGRAM

i@ PRINT HIY

180, B! "2 233288825522y
LEEREEE®R
2@ PRINT AT

i B T
EEELEFEEEET
30 FOR p=—E@ TO E%
PRINT AT 12.9,; "PITCH HUMBER

« - B I = L L — o

ZEFERFRRERED

b
L)

D=l
LEa90

= =

T

Pitch values range from 60 to 69. The values for six octaves
grouped around middle C (0) are shown here.

~ Note Pitch Value
G#,Ab | —16 4 g 20 32 44
G =17 -3 7 19 31 43
FF#, Gb —18 6 § 18 30 42
F 19 - 3 17 29 41
E -20 | -8 4 16 PR A
D#,Eb =21 -9 3 15 27 39
D - 22 — 10 2 14 26 Eh
C#, Db -23 =11 1 13 23 37
i —24 - 12 0 12 24 36
B —23 13 -1 11 23 33
Ad#,Bb —26 —14 -2 10 24 i4
A ~27 15 -3 9 21 33

A FOR... NEXT loop in lines 30 to 80 goes through all
the possible p values from —60 to 69, sounding each
note for a tenth of a second, and lines 10 and 20 PRINT
a frame around the pitch number PRINTed by line 50.

Measuring the Spectrum’s speed with sound
The next program uses BEEP as a signal. If you want to
find out how quickly your Spectrum works, you can
write a program to make it carry out a long series of
calculations, and then time how long it takes to
complete the series. For an approximate uming, your
watch will be accurate enough, and to get around the
problem of having to look at your watch and the screen
at the same time, you can use BEEP to mark the
beginning and end of the program. Here i1s one way by
which you can do 1t:

SPEED TEST PROGRAM

M"SFECTRUM SFEE

=

' @@Ll =0
"EesLCULESTAON =

=

T
QOU-JDU~ &G —=
MmEIMO~DAD D

TOZ U e VT4 T
0

DT

z

=

GEOEER0ERBMNE
m
0
G

FIMFEL TOT

I
e

SRECTRLUM SREED TEST

FIMNAL TOTHL

0D D

After the program title has appeared, lingered a while
(determined by PAUSE 100), the timing period begins.

R Sl

e

A message on the screen and a BEEP lasting 1/10th of a
second tell you when the calculation - adding together
all the numbers from 1 to 1000 — has started. Some
seconds later, there is a second BEEP, again lasting
1/10th of a second but at a higher pitch, marking the
end of the timing period. In that time, your Spectrum
has not only performed 1000 calculations, but it has also
PRINTed out 1000 results! Dividing the total time by
1000 will tell you how long each calculation and
PRINTing takes.

Programming simple tunes
With the BEEP command, it is quite easy to get the
Spectrum to play a simple tune. Here to start with is a
short sequence of notes. You just enter a BEEP
command for each separate note:

SIMPLE NOTE SEQUENCE

L A

JUO O L0 s
(R Talol ot ol
ol lni s Binfa
I i
M mmmmee
10T TTY
QGAROEo
D Bl g T O
08 ~dr=J = G
[}

As all the BEEPs are 0.5 seconds long, you could save a
little typing time by using a variable, t, and setting it to
0.5 at the beginning of the program. The BEEP
statements would then look like this:

NOTE SEQUENCE - VARIABLE DURATION

(1.}

» 5

b Al P
gacoseon
suy i Lolol g
MMmmmmmmm
mmmmmmm-
LURFR Rl
o S k)
R e LD
n

%

The advantage of this is that you can then change the
value of t at the beginning of the program, and all the
tumings will then alter in step.

Music on the Spectrum
If you want to write real music on the Spectrum, you
will have to tackle the problem of timing. Musical notes
can be of various lengths. If you call the duration of a
crotchet d, then the durations of the other notes are
related to it like this:

NOTE DURATIONS

If the duration of a crotchet is set at a variable d, the
durations of other notes are as below,

Semi-quaver (sixteenth note) — d/4

J ~——— Quaver (eighth note) — 2
----- Crotchet (quarter note) [
Minim (half note) e D]
——————&— Semi-breve (whole note) Gl

You can then set about converting a piece of sheet music
into a computer program. Here are a few bars of a tune
which you will probably recognize when you get your
Spectrum to play them. The musical score for the first
few bars looks like this:

! ——]

Now it is just a matter of converting the notes. This
listing sets d at 0.5; once you have entered the program
you can vary the speed by altering this value. You will
find that the pitch remains unaltered:

TUNE PROGRAM

3
[

= B0

OEERRPREEL P RD0L
i

NS N e
B0 B0 O = Y D L) PO MG 3=
BN -

[
=]

-

= il » =

LR

e udededvTefelafuile fuk

T MM MM A SR MM

S
L]
L)
(=
@
i
L]
(%)
a
@
)
]
&
L)
)
)
2
(5]

DO o R d Gl o o iR

TR M MM M m s mmEmmmee—
D000 ODDTVOTOUTUTD

L
=
3
ol
=]
2]
v
=
o
%)
1
=]
=3
e
-
=
T

IR (R RN

&
1
€
a |
2t
1
&L
1

aLiduli
M
N,
A

T e e R ORI |
SPECIAL EFFECTS WITH SOUND

5o far you have just used the BEEP command to LOOP SOUND EFFECTS
produce musical notes. However, when you come to
writing your own programs, you will often want some
quite unmusical sound effects to give the screen display
added realism, Menacing sounds add a whole new
dimension to many programs,

Writing sound loops

The simplest sound effect you can produce uses two
BEEPs, at different pitches, and then cycles between
the two by using GOTO to make a loop. Here is a
program that pruduu:;-. a siren effect:

[. GOTOSOUNDLOOP.- .

e
= i

0

el el o b oo
M ™
T

mmmmm-
HATTOTTT

T B U e

IR

L
=15
o] %
40
=T
=i
s

allulelili Py
OmmEMmM

This simply plays a high note for a quarter of a second,
followed by a lower note of the same length. You could
write both BEEP statements on the same line so that the
whole sound routine would take up only two lines:

10 BEEP 0.25,9:BEEP 0.25,7
20 GOTO 10

Because this program is written as an endless loop, you
will need to'press the CAPS SHIFT and BREAK keys L el
to make it stop. However, by changing the loop to use - A BERs R Rpn e
FOR ... NEXT, you could incorporate it into a 3 MEXT h

program as a sound effect that lasts for a set period of
time, or that is repeated at intervals.

Altering the duration of a sound loop

The character of a sound can be changed dramatically if
you shorten the playing time of the elements that make
it up. By altering t in line 10 of either of the next two
BEEP programs, you can hear the effect of shortening
a sound sequence. These sorts of sound are often used
in otherwise routine games to startle the player at a
critical moment. The shorter the duration of the
BEEPs, the more urgent the sound seems to become:

(T«

The sound programmed in the third screen illustrates
what happens when the BEEP gets really short. The
program uses just one BEEP statement, but it features
a technique that you haven’t come across before — that
of stepping backwards through a loop. The loop begins
at p=060 and decreases p by 2 on each cycle until p=30.
Each note sounds for only 0.005 (5 thousandths) of a
second. If you make the note any shorter than this, it
will sound like a click. You cannot produce a great
variety of sounds with such simple sound commands.
However, if you use sounds at the bottom end of the
pitch scale, you can produce another type of effect. Try
this program; it produces a chugging sound, rather like
an engine:

LOW PITCH L.OOP

Unpredictable sounds

So far, you have had a good idea of what sound a
program would have produced before you ran it. But
now try this program. (You will find the keyword RND
above the T key):

RANDOM SOUND

IRMHE S8)
E

Instead of giving the pitch a fixed value or a predictable
range of values, this program lets the computer choose
pitches at random. (The use of RND is covered fully on
pages 48—49).

Synchronized sound effects

It’s relatively easy to generate sounds in isolation, as
you have been doing so far, but incorporating sound
effects in a program successfully is more difficult. The
trick is to get the sound at the right duration at the right
part of the program. To illustrate how this is done, the
next program makes a simple graphics character move
from one side of the screen to the other, while
generating a sound effect in step with the movement:

'SYNCHRONIZED SOUND AND ANIMATION

|
mo
S F
=
1]
=
)
iy
el

= =TT T

| 4+~

]]
-I-|.'\-
o
-
=5 &
Wl
e

AN A

344

= o wow

A
e

ENER0D-~JR=ai
« DD DhD-

SEOGO0GS58980

ANZZZVEZLZED
[
W oy

Lo I e

HMHHANMREAAM
[

ZODTDOTDTmT
AMDIIMIDDm

i
XL
1
i 1

ne

Instead of setting up user-defined graphics, the
program uses the relatively coarse graphics available on
the number keys. The character is composed of a total
of eight separate symbols PRINTed over three lines.
Normally, the character would be PRINTed and then,
after a short time delay, erased before being PRINTed
again one position further across the screen.

The delay makes sure that the character 1s on the
screen longer than it is off, to minimize flickering.
Here, though, the sound effect itself 1s used as a ume
delay. If one sound were made on each pass round the
FOR ... NEXT loop (lines 20 to 130), it would be a
rather disjointed, stuttering sound because of the
relatively long silences. Splitting the sound effect into a
number of different BEEP statements gets round that.
It also makes more complicated sound effects possible
than a single BEEP statement could produce. The
lengths of the sounds are carefully chosen so that there
is as little delay as possible between one character being
erased and the next character being PRINTed, Since
the BEEP command stops the program for as long as the
sound is generated, it 1s necessary to display the
character on the screen first and to generate the sound
immediately afterwards.

BT e v e e

DECISION-POINT PROGRAMMING

You have already looked at the concept of the loop 1n
programs a number of times from page 26 onwards. If
you want to carry out a calculation or put something on
the screen 10 times, you could write:

FORA=1TO 10...
NEXT A

But there is another way of doing this, by usingan IF ...
THEN statement. To take an example, let’s say you
want to PRINT all the numbers from 1 to 10, together
with their squares and cubes in a table. Here 1s how you
would do it with FOR ... NEXT, and then with a
different program which uses IF ... THEN:

" FOR...NEXT LOOP

L BORDER 1
LS

FHFER B: IMNH 2: C
HT & ,;14; @A
R s

Hw FRINT HT 4.6 " H™;
T2 AT 4,24 "ATL3IY AT 5

H30 FOR =1 T0 1@

40 PRINT

EQ BEEF @.1.40

EQ@ PRINT AT n+8,.B8:n:AT Nn+5,14;
NnTE2; AT n+6,24;N13

TO MEXT n

Inthe IF ... THEN program which follows, line 10 sets
up the colour screen, and line 30 PRIN'Ts the table’s
heading as before. Line 40 is the first line of the loop -
it increases n by 1 on every pass round the loop. Line 70
15 the same PRINT statement used in the FOR ...

NEXT program. Line 80 is where the computer makes
a decision as it examines n. The < symbol 18
mathematical shorthand for “less than”. So, if n 1s less

than 10, the computer is told to go around the program
again from line 40. The computer continually PRINTs
out A, AT 2and A 1 3 until n is not less than 10 when,
111 tlm case, it stops:

IF...THEN LOOP

iad BORDER 1

—

28 LET n=@a

4@ PRINT AT 4,68; " "A“ AT 4,14;"A
= R C i = - i — R — B - - e

LET nsn+d
PRINT
BEEF 2.1,
PREIMNT HT BN AT RA+6, 4145
ntE: AT ”/+8,24; i
B IF n<l1@ E0 TO 4@

PRFER &: IMHK =2

Why use the IF ... THEN loop?
Y ou might wonder what the point of this is, asthe IF , ..
THEN loop produces just the same results as the FOR
. NEXT loop. The value of IF ... THEN 1s that the
computer can respond to any information that you
INPUT ‘during the program’s operation by making a
decision about it. Here is an example which shows this,
by giving you a chance to test your skill at mental
arlthmt.nt, (RND 1s E:{pldll‘lLd on pages 48-49):

MATHS TEST PROGRAM

SONELN=
G~G5058089%

w1

IHHD*iEJ

LR
TD 138

E
rd again-

z
. 5
0

ITZRH I i
- =

e DR ORF
ﬂ oamoan U :

= DRLC H* :
D

1CZ0 =& T
ﬂmiﬂm

i v

11& F“HIHT FIT 1& ,
e PHUSE S@

1280 GO TO 5@
1@ BEEF @.5,58.
s M==COrreECL ==="""
1da@ EO TO Fa

PRINT AT 10,18
PRUSE 5@

Each time the computer sets the problem and waits for
your answer, it 1s faced with two possible courses of
acuon. If you type in a correct answer, the IF ... THEN
statement at line 90 directs the computer to go, not to
line 100, but to line 130 next — PRINTing a “correct”
message and then setting another problem. If the
answer 1s wrong, then the computer “falls through” the
IF ... THEN statement to line 100 and goes into the
“wrong” routine.

It 1s important to remember that there must also be
something in the program to stop the wrong answer
routine carrying on into the correct answer routine. In
this case, it is line 120, which makes the computer
PRINT out the problem again:

I MATHS TEST DISPLAY

MATHSE TEST — - ~

Creating graphics with IF ... THEN

You can use IF ... THEN in combination with graphics
commands to turn your Spectrum into an electronic
drawing system. All you have to do is program the
computer to respond to an INPUT by DRAWIing:

BEORDER @: PRAPER @ INK 7: ©C

PLOT =25.,2%

LET ®X=9%

IMPUT kK

F ka5 THEN
kel THEMN
k=7 THERM
k=8 THEN
TO 4@

NEJTRAED -
DEGEEES. 0

‘ dealing with moving characters.

In this simple program the IF ... THEN statements
allow the computer to decide what action to take. This
program uses the cursor keys to DRAW lines either
horizontally or vertically from a point near the bottom
left of the screen.

The program simply PLOTSs the point 25,25 and then
DRAWSs a small line every time you press one of the
cursor keys. The four IF ... THEN lines make the
computer examine your INPUT, and then decide in
which direction the line should be DRAWnR. Each time
you use a key, remember to press ENTER so that the
computer receives the instruction.

‘The statement in line 30 tells the computer how long
to make each line. Making x equal to 5 gives quite good |
results, but you might like to try altering its value to
change the resolution of your pictures. In addition to
this, of course, you can change colour simply by
altering the numbers in line 10. This screen will give
you an idea of what you can DRAW':

IF ... THEN GRAPHICS DISPLAY

b

B
=
am
= =
.
-
HE
-
]
- —
o
= e
. -
L]]

Selecting the right condition

Although you can extend this sort of program to use
more keys, the Spectrum does have a better way of
achieving the same effect, and having long rows of IF
... THEN statements is not really good programming.
But when youuse IF ... THEN, remember that there is
a great variety of “conditions” which can follow the IF
part of the statement. The programs on these pages
have used either < or =, but this is only part of the
complete range of symbols that the Spectrum uses as
you can see from the following table. Choosing the right
condition is not always easy, especially when you are

The symbols that follow the IF part of a line specify the kind of decision
that the computer will make.

= 15 equal to < > 15 not equal to

= 15 greater than < is less than

= = |5 greater than or equal to < = |5 less than or equal to

UNPREDICTABLE PROGRAMS

Although computers generally work with precise
information, doing exactly what you tell them to do, an
element of chance 1s necessary in certain applications.
For instance, most computer games are based to some
extent on Juck. If you want to make something happen
at an unpredictable time, or if dice are to be thrown or
coins tossed, you can’t tell the computer what result to
produce every time or the element of chance would
disappear.

The way to build chance into a program is to use
RND. You will already have come across this command
— it was used to produce a series of random numbers for
example in the maths test program on the previous two
pages. RND, as you have probably guessed, stands for
RaNDom and it allows you to generate random
numbers up to a maximum that you can set. You can
then use these numbers to produce unpredictable
sequences, The command 1s used like this:

10 A=RND

This will make A a decimal number that 1s somewhere

between 0 and 0.999999999, ‘Try using RND in this
program, which PRINTs numbers at random:

RANDOM NUMBER GENERATOR

18 PRINMT AT
geEnEraLorf '’
2 PRIMIT HE

V" Random MU Be

1}

4
~
w2 (010

T
oo
HI

=0
]
DEXHEMHEDXHH IFXHH

o s

S = =

EDONLT
-ZL
- no

G
Iik- I+ DDO DIC
4

4> =4

UOETT

)
%]
&
%]
%]
5]
& M
5]
]
5]
")
%]
&
78]

o b i 0 e
e R A o AT B
E
=MIIRDOMIDNoOMmD
T=ELZMTE

This uses RND in line 120 to generate random numbers
between 0 and 0.999999999, while lines 30 to 100 set up
a border of asterisks to frame the numbers. Very small
numbers include the E symbol that you came across on
page 17. Normally, as each new number is PRINTed, it
automatically erases the last number — simply by
PRINT1ng on top of it, However, when something like
k-4 appears, it is not automatically erased, so the nine
blank spaces in line 150 take care of that.

‘The Spectrum can generate only the limited range of
random numbers used in this program. To generate
other random numbers, you have to manipulate RND.,

REANDOM NUMBER DISPLAY

Random numbeEr QEnerator

Producing random whole numbers
If you now replace line 120 with:

120 PRINT AT 10,14;INT (RND=10)

and RUN the program again, you will notice an
immediate change in the display. The numbers are no
longer decimal fractions, in fact there’s no decimal
point at all. Instead, the program is generating whole
numbers between 0 and 9 inclusive — a much more
useful result for programs. IN'T, which you came across
on page 27, rounds the random number produced down
to the nearest whole number, or integer.

This way of using RND 1is very useful for
programming games with chance built in. It 1s quite
easy, for example, to get the Spectrum to simulate
throwing dice or tossing coins:

COIN TOSS PROGRAM

R R
GEoRSE
e |
RDMMmo
-4 T}
H

A
= k= i

=
o me—=

_,.
.

As a tossed coin can only have one of two values - heads
or tails — line 20 produces a random number that is
either 1 or 2. Tails are represented by 1 and heads by 2.
Two IF THEN lines determine what is to be
PRINTed, and then the program continues:

COIN TOSS DISPLAY

T
mI
T
or

_|

i1
IHI DD D =R
oorr

roorrrrrooroo
8 v O L e L L B R N

U T o e P B R R |
IMMI DD ODMRDMmMmMmD

e D HHAEHED

Checking a random sequence

It is possible to write a program that will show you just
how random RND is. If you use RND to toss an
electronic “coin” 100 times, you should get roughly 50
heads and 50 tails each RUN. You can actually test to
see 1f this 1s true. Key in this program:

RANDOM TEST PROGRAM

"HEADS"

: cE=""T]
Eili'l PRINT AT B UTHIS TH=ROW: *

cH
p=1"
18
11
L:
1=
139
148
15Mm
i
15
€17
156

B 5

-
0

When you RUN this, you will be able to see how close
to 50:50 the heads and tails are each time the program is
carried out.

Using RND in graphics programs

You can produce some interesting effects with RND by
incorporating it in graphics programs, so that the
computer is instructed to PRINT a character at a

random position on the screen. If you then make the
computer repeat this a number of times by using
FOR...NEXT you can build up a display which will be
different every time the program is RUN. Here is a
program which uses RND in this way:

RA [‘JUHM GRAPHICS PROGRAM

I ICCECECCE
SO DIININIAN
—_|:|- b (v i i s s

R DR e

s e
MR & L0 g S0

Lines 10 to 80 define a character that is stored in the
computer’s memory and recalled by using the A key
with the graphics cursor. Line 90 sets up a screen which
1s completely black — both BORDER and PAPER are
set to 0. Lines 100 to 150 make up a FOR ... NEXT
loop which selects a random position and a random
INK colour, and which then PRINTSs the character.
PAUSE 0 (line 160) simply stops the program until any
key is pressed, preventing the completion report from
appearing:

—

RANDOM GRAPHICS DISPLAY

You can also use the RND command in programs to
make keyboard characters, or even random points,
appear in random colours. To do this, use the command
INK c(where cis a random number between 1 and 7) in
the same way as in line 140 of the program above.

B

COMPILING A DATA BANK

T'he data necessary for a program can be collected while
it is RUNning by using INPUT;, or alternatively can be
written into the program itself. The commands used to
store data are quite straightforward. Data is held in
DATA statements and read by READ statements. Here
1s a program which will show you the technique at
work. Type in:

CONSTELLATION PROGRAM

I_E-lu BORDER 1: PAPER 41: IMK 7.
20 PRINT AT @,11: "URSA MAJOE'
30 PAUSE S@ o
G2 O .'-..“I.E'I.T'.lﬁ_".l'l,';‘.l':-_.

s L =D 1
5@

mT

g S
20 m e

- PR
LR

m =4 0

L1

| [

IDMMOn- 5
e

=]
P

Y
Ii=

=CHMD D=0

T

Z

m
m—
i}

When you RUN this program you should see on your
screen a computer-generated map of a group of stars,
the constellation Ursa Major, also known as the Plough
or Big Dipper:

Rz ~ CONSTELLATION DISPLAY

T'he information for the display is carried in line 40 in
the form of 14 co-ordinates. Line 70 tells the computer
to READ the DATA in line 40, and to understand the
DATA as pairs of figures which the program will refer to
as x,y. Line 50 tells the computer that there will be
seven of these pairs altogether,

‘T'he computer first produces a short pulse of sound, and
then PRINTs an asterisk AT each wvalue of x.,y,
transforming the row of DATA into a map on the
television screen.

With a program like this it is easy to enter new DATA
to get the computer to PRINT a new map. Here is a set
of line changes and the map it produces:

20 PRINT AT 0,11;“CASSIOPEIA”

40 DATA 8,3,12,8,9,14,14,18,8,24
50 LET n=35

CONSTELLATION DISPLAY

CR23I0OPETITR

When you use DATA statements, it is important to tell
the computer how much DATA there is to READ. Line
50 in the constellations program shows you how to do
this. It sets the limit for the number of pairs of co-
ordinates that are to be READ, so when the computer
has PRINTed the final star, it stops. If there was no
FOR ... NEXT loop in the second half of the program,
the computer would run out of DATA, If this happened
the program would end with an error report.

Storing numbers and strings together

Strings, too, can be stored and READ using DATA
lines, and you can also store a mixture of both numbers
and strings — the names of friends and their phone
numbers or birthdays, for example. This does present a
problem though, because two different types of READ
statement are used to read numbers and strings -
READ a and READ a$, for instance. But if you make
all the DATA, including the numbers, appear as
strings, you can overcome this difficulty.

The following program holds a personal telephone
list. Names and telephone numbers are loaded by lines
10 to 50, Lines 60 to 80 display the program title and
then offer a choice of functions:

TELEPHONE LIST PROGRAM Alternatively, by typing in the following command:
2 then ENTER \

you can hml th number of just one name, after which
the computer returns to the selection display:

TELEPHONE LIST SELECTION DISPLAY

4]

ONEheLCas 3

= |

= .':I:|.|:r- e

L= 3

r= T3

D=l CilrR

H+F"4i E
1

T Wl 2

Timpson", T
E@ PRINT AT
PHONE LIST"
T FRAUSE 182
5@ FPRIMT HT
TING.: : s sPriEss
TUE LISTIMNG: ..
28 Cl.S
i@ IF
11a8 PRIMI
188 FUR Cel
1L3@¢ READ AW, Mt
140 PRINT TAB Gin%;TAB 185;m%

ScroLL"=?

i Hmn*hmm;
TOTT-

FPERSOMHEL TELE

FERSUNMNAL TELEFHORMNE LIST

COMPLETE LISTING. «..

LEL_ECTIVE LISTING. ..

123 MEXT ¢: PAUSE @: CLS =0T

[

1688 CLS @@ PRINT AT 2.5: "ENTFEFR T
HITIRAL AHE HNEAEME"

17@ IMPUT &%

LESE LET‘ rEis"HMNamée not rfround?®

If you type in 2 at line 80, the program follows lines 160
210 REFRL"E Puen LET rasnss to 260. You are first asked to enter an initial and a name.
048 Nk 1M Make sure that you PRINT in capitals and lower case as
2o PAUSE SBB. DA in the DATA lines, without spaces, or the computer will
ghoieg s o etitv el not recognize your entry.

If the computer finds that the name (e$) that you
typed in is the same as one of the names (n$) in the
DATA statements, it will give a new string (r$) the value
of n$ plus a line of dots and the telephone number. If it
does not find e$, r$ 1s left unchanged at “Name not
found” (set by line 180), and that is PRINTed out at the
end of the program.

To PRIN I' the whole telephone list, type: Because you want to add the name, a line of dots and
tﬁen ENTER the telephone number together in line 220, the

R telephone number has to be treated as a string variable

LF COMPLETE TELEPHONE LIST m$, instead of a numeric variable, m. If you used m the
' program would not work because string and numeric
variables cannot be added together.

Lines 190 and 260 use a new command, RESTORE.
This tells the computer to go back to the beginning of
the DATA statements when it carries out the next
READ command. Without it, the program would only
RUN correctly once. This would be because the
computer would run out of DATA; it would try to
continue searching the DATA after the final item, but
the program tells it to READ all the available DATA on
each RUN. RESTORE lets the computer start
searching from the beginning of the DATA each time as
if 1t was the first RUN.

Once you know how to compile a DATA bank, you
can use one to store your friends’ birthdays, another to
list bills and payments, or the details of your videotape
or cassette library.

SNENDIDDECHIIOmD
1=
Ead PRI

= L) <0 S R

TR TAg ST E ey e

CIGIMITINWDCIN
I_'l
7]
(7]

i) N RSy T o o e [By |

= =0 DT O

=
=1 %]
o RO

ifJ
@

QUICK WAYS TO STORE CHARACTERS

On pages 30-31 you saw how to program and store your
own graphics characters using the commands POKE
and USR. As you will have noticed, getting the
computer to produce even one user-defined character is
quite a lengthy business. Programming a single
graphics key takes eight program lines, so if you want to
produce a symbol made up from four separate
characters, you would need 24 program lines.
However, the graphics programs on pages 36-37 used a
short-cut that can make producing your own characters
much faster,

Programming characters with READ ... DATA
As you saw on page 30, to program a graphics character
you need to enter the numeric value of each line in the
character grid. Here are two programs which produce
the same character. The first uses a separate program
line to store each separate total from the character grid:

SAVING LINES WITH FOR...NEXT

~

CCCC

SN |

Qs IR B

000000
CCi
phi A Ch AR

IXTTEEE

o O - T
el ol Dof el o] |
TTINTTITT
(MM Mummmmem
DDDININNN
ﬁdﬂﬁﬁiﬁﬁ
FE bt
~JEM&EGNER
SRR
MERAE-D

LB T N R

2
I

B oK, @.1

The second program instead stores the totals in a DATA
line at the beginning of the program, and then converts
them into the same character using a READ line.

You can see from this that READ ... DATA cuts the
number of lines needed from eight to five. But although
this 1s a useful saving, the great advantage of the READ
... DATA technique 1s that 1t actually saves you far
more lines if you want to program a symbol that is made
up from a number of characters, or if you want to use
more than one symbol in a program. Then the savings
become really worthwhile.

Storing groups of characters
Here 1s a program that reprograms four keys —a, b, ¢
and d - to produce the symbols for four playing-card
suits. Each of the symbols is produced by one loop.
With a few extra lines you can create a display with the
symbols:

READ...DATA WITH 4 LOOPS

_ 25,62, 127 .68, 86,8
CATA LA ART ABT AST B

BRES

CETHA . 82,127,187 ;187 .62
DATA 22,0 6T, L2 12T AS

FQOR

HERD X

FORE USSR "&" %[,»:
FOR fel@ TO 7

RERD X

POKE USSR "B"%F ,%: HNEXT F
FraE s 1T 7

REAC %
Sty Xl NEXT ¥

&

NEXT fF

FQBEE USSR
FOR IT=d TO
RERAD x

FOKRE USSR ""'d"&F , X: FHIE T I

L
-
- |
e
=
=
=
7
(=]
=
(5]
A
=
=
E
=]

HEGOGIOOOREE

i
1
1
1
i
1
1

This way of producing the four symbols uses a total of
16 lines. This 1s eight lines less than the simple but
laborious method which uses eight POKE ... USR
statements per character. However, you can save even
more space by READing all the DATA in the program
inone FOR ... NEX'T loop. Here is what the program
would look like:

READ...DATA WITH 1 LOOP

B
i -

gy R T EN THT

S060008%- 0066

TaAlRF ,ART 6E a8,
127 .5 . 8.8 5B

1]

| ol
=CCCCEn i
ROAAY- S0
DI0DDxX -
Crgm-
4+
ML = E

At first sight, all the DATA seem to have changed.
However, all that has really happened is that the DATA
numbers have been keyed in a different order. The

DATA is still held in the first four lines — 10 to 40. Line
60 tells the computer to READ this DATA in groups of

four numbers, w,x,v,z, and each of these numbers
reprograms a separate key. So the numbers that
reprogram the A key are first, fifth, ninth, thirteenth,
and so on. The key DATA are arranged like this:

DATA a,b,e,d,a,b,c,d,a,b,c,d

All you have to do to use this with your own symbols is
to add up your grid totals, as in the diagram on page 30,
and then make them into DATA lines by putting them
together in the correct order. Now instead of saving
eight lines of program, you will have saved thirteen.

How to use binary numbers with graphics
Unless you use a calculator, programming graphics
characters can be quite a test of your ability at adding
up. The code numbers for each column of squares in the
character grid are not the most convenient numbers to
deal with, and it is quite easy to make mistakes. But the
Spectrum does let you key them in in another way,
using the command BIN, which stands for BINary.
All computers use a binary system of electronic
pulses to carry information. The word binary means
that there are only two types of pulse - “on” or 1, and
“off” or 0. All your programs are simply a stream of
these electronic pulses. Every number that you type
into the Spectrum is converted into a series of these

“on” or “off” pulses, but because humans are not very
familiar with the binary system, the computer is
designed to accept “ordinary” numbers.

The command BIN by-passes this process and lets
you enter binary numbers directly. BIN precedes a
number that 1s written in multiples of two, instead of
multiples of ten. Reset the computer and see what
happens when you key in the following:

PRINT BIN 10
PRINT BIN 100
PRINT BIN 1011

Instead of seeing 10, 100 and 1011 on the screen, you
should see 2, 4 and 11. The computer has converted the
binary numhers back into “ordinary” numbers. The
computer’s ability to accept bmdry numbers 1s not of
great value in simple programming. However, you can
use the BIN command to save yourself having to do
calculations when reprogramming keys.

You will remember that when you use a character
grid, the numbers across the top of the grid go up in
jumps. Each number is twice the one to its right. The
computer actually gives each column a binary code, 0,
10, 100, 1000 and so on, so you can use binary numbers
to enter the way a character is to be made up. Here is a
grid numbered in this way:

USING A HINARY GRID

% § Binaryrow
= - totals

1000
11100
101010

- 100
10

1011101
'_11'.105 ;
11100
1 o

i

If you imagine that each filled-in square has a value of 1,
and each empty square has a value of 0, you can enter
the screen totals as sequences of ones and zeros using
the BIN keyword or simply use BIN in a series of direct
commands to PRINT each total in decimal. The great
advantage of using BIN is that although the binary
numbers look long, there 1s no adding up to be done.
You sumply key in what you see, counting black as 1,
and white as 0.

ADVANCED COLOUR GRAPHICS

Having tried some simple colour g ;—_.,rdphlu-. on pages 36—
37, you can now move on to putting all the graphics,
colour and animation commands together in one
program to experiment with the ways they interact with
one another. 'T'he program on these two pages produces
a complex picture; if you work through this listing, you
should be able to write a similar program yourself.

Creating a landscape

The first step in producing a display 1s to program it in
black and white. Here 1s a listing that does that, using
the “scrambled” DATA system that is dealt with on the
pr{,vimﬁ two pages, and also using PLOT and DRAW
Lo Illl in twu ‘pyramids’:

T ~ PROGRAM BEFORE COLOURING

18 BATAH 127 .24 , 73,1486,

=1
-

,—H BATA S99 , 228 ., 6358 52, 1% , =248 .5
2l

, madS , 53, BER , 3

.
468 DETHE 623, 2582 ., F Lad 6 1= . =254,
Lok , 2
L= 1"]
50
)

o OOAEEDN=GD 0
¢ GEEGLASAGA0G

S e T

FRINT AT
PRINT AT

19
=D
=i
P =)
=30
=
= i

The DATA lines (10-40) define four characters that are
PRINTed together by lines 240 and 250 to produce the
Sun. Lines 50 to 110 transform the information in the
DATA lines into user-defined characters that are

controlled by keys a, b, ¢ and d. Lines 120 to 150
PRIN‘T seven lines of the graphics character on the 8
key to form the foreground. Lines 160 to 230 then
DRAW the two pyramids as simple triangles.

Once you have keyed in all the program, RUN 1t to
make sure that you have typed it correctly. If the
following display appears, you are ready to move on to
the next stage:

DISPLAY BEFORE COLOURING

Programming colour and perspective
Now 1t 18 a simple matter to add the colour:

5 BORDER 0:PAPER 1:CLS
140 PRINT INK 2;AT r,c,”
235 INK 6

When you RUN the program, the changes should result
in the BORDER turning black and the PAPER blue,
followed by a red foreground and yellow Sun.,

You can now add the perspective lines, to give the
display a feeling of “depth”, The lines should produce
the same effect as parallel paths disappearing into the
distance. You need to DRAW lines between two
horizontal rows of co-ordinates, with the top points
being closer together than the bottom ones. Try keying
in these lines:

260 LET w=8: INK 7

270 FOR x=7210 184 §TEP 16
280 PLOT x,38

290 DRAW w—x,—38

300 LET w=w+34

310 NEXT x

The x co-ordinate of the top (most distant) end of each

line 1s given by line 270. STEP 16 makes x increase by
16 each time instead of 1. The graphics cursor 1s then

moved to the top of the line by PLOT x,38. Each line is
DRAWnN from that point to the bottom of the screen by
line 290. Then, to make the x co-ordinate of the bottom
of the line (w—x) step across the screen in bigger steps
than the top, line 300 increases w by 34. Once you have
done this, RUN the program again:

“"CHUNKY” GRAPHICS DISPLAY

As you will see, it produces odd results, The lines are
DRAWn as large squares. What has gone wrong?

DRAWIing lines on colour

The answer is that although the Spectrum’s graphics
use 256x176 pixels, INK colour resolution is only
32x22, the same as the text resolution. These large
squares are known as “‘chunky graphics”. As the lines
are DRAWn, they automatically change the colour of
every square they pass through. However, if you watch
the top half of the screen as the picture forms, you will
see that the lines used to DRAW the pyramids do not
produce these chunky graphics. One further change is
needed to create this complete non-chunky display:

CORRECTED DISPLAY

PN

B8 QOKE , S1&8: 1

The problem 1s that lines can be DRAWR successfully
on background PAPER colour but not on INK.,

You must therefore rewrite the program so that the
red ground 1s DRAWN as a background PAPER colour
—not as INK. You can do this simply by changing line
140 to PRINT with red PAPER:

140 PRINT PAPER 2;AT r,c;* ”

Now the perspective lines will appear successfully.

Adding a moving character

For the final touch, you could add a bird flying across
the screen. You can produce this by using two user-
defined characters, and alternating them to simulate the
bird’s flapping wings:

DATA AND ANIMATION LINES

215 ,8,16 ,0 .48, 2,58
O ,252.,120,1280, 16,16,

THERM PEINT
a2] Wil
_THEﬂ FRIN

#+DE&GLR
NS00
aTea856

e M

Lines 410 and 420 use IF and THEN to make the
computer check whether ¢, the bird’s column position,
1s even or odd. If it is even, the bird’s body alone 1s
PRINTed, if it is odd, then a flapping wing is added.
The display is now complete:

FINAL DISPLAY

YR Ep TL S SN S

s NN -x
. N

WRITING SUBROUTINES

You will often want to use the same few lines of a
program again and again to carry out the same
calculation or to display the same group of characters on
the screen. To avoid writing out the same lines time
after time (and using up too much of the computer’s
memory) you could branch off to frequently-used
sections of the program with GOTO. However, relying
on GOTO is frowned on by many programmers. Using
it carelessly can turn your programs into untidy mazes
that are impossible to understand or debug.

The easiest program to analyze and debug is one that
1s written methodically in blocks or modules, each of
which you can test independently of the others, if
problems arise. If you look up the listing of a good
games program in a magazine, for example, you will
find that it works something like this:

MAIN PROGRAMME SUBROUTINES
Set up screen display
*)
PRINT !Jrngmm instructions | Time delay B
- i iR .
s e o Display A
Start PWE’F'“ phase 1 “.._T'......_..,"'"h_ Time delay A
——] Display A
Increase game speed Phﬂﬂf_z S Time delay B
* .
. £ i Display B
; ‘ - [t _ Display
Sw:t:h to more difficult game [T O Time delay C
T :
25 ;
Final screen display 2 - R
]

How to use a subroutine
Frequently-used blocks of programs, or subroutines,
are written using the command GOSUB. This allows
you to branch off from the main program to the
subroutine and then return to the main program again.
The command looks like this:

50 GOSUB 500 -

Here the main program RUNSs normally until it reaches
line 50, which makes the computer jump to a
subroutine at line 500. After it has been through the
subroutine, it returns to the main program at line 60 —
the one after the line where it left. The subroutine must
be ended by the word RETURN. Without it, the
computer will not go back to the correct point in the
main program.

You can use GOSUB in almost any program where
the computer has to repeat an operation. The next
program produces a temperature conversion chart,

using three types of measurement, Centigrade,
Fahrenheit and Kelvin. The subroutine at line 80
makes the computer PRINT out a line on the table,
produce a short BEEP, and then return to line 60. The
command STOP at line 70 stops the program carrying
on into the subroutine. If you miss out STOP, the
computer will reach the RETURN command at line
110. It would then produce an error report because it
had encountered a RETURN without its own GOSUB,
You will notice that the subroutine in the listing below
is inside a FOR ... NEXT loop, so it is “called” a
number of times. The display produced when you
RUN this program i1s shown on the bottom screen:

TEMPERATURE CONVERSION PROGRAM

18 RORCER A : PAFER 2 LK 7
| -

=28 PRINT AT 1.4;"Cc“;AT 4d1.185; *
“cAT 4,265 "K'

5@ FRINT ‘.

490 FOR c==30 TO 149 STEP 18
=0 GO SUBE =@

x

PPROOEEELE
RERSESLREAGRS

86
ENRAPLUDRSOO~NBAS

L e e e g - L R LA T
GRRUFONAENEIOBNRAR
FEOUULOLRUREINBRDLRD
GRULGLELOLLLEERRROL

i
T
@
=
=]
i
=
]
=
L&)
]

=

In this program, the subroutine is not actually saving
any space. However, if you extended the program to
carry out other functions, the subroutine could be
“called” again as often as you wanted - saving both
space and memory.

Setting up displays with GOSUB
In many programs, you are initially given a “menu” or
choice of options to select. This choice is often
programmed by using GOSUB. When you enter your
selection, the program goes to the appropriate
subroutine and sets up the display you have picked.
Here is a simple listing that shows how you can do
this. The program can set up either of two basic
displays. One is illustrated on the bottom screen. The
colours in each display are produced by a subroutine —
which subroutine is used depends on your INPUT
following line 20. If you were using this subroutine in a
real games program, you could use these colour settings
~ often by putting in a GOSURB:

MENU PROGRAM

BuRLCER 1
INFPUT TARE 7. '"DISPLAY

THEN GO SUB
THENMN =20 S5SUE
v: FRFER p:

Nie

SO ELE DR
2l padele LR T

TO 21
TR 31
IR,
MEXT r

HE@ TO S5 &STEPRP
. U
: A

o

- DORD
-|

® -n=DMen
i 1 11

i
T & 0 e o o ok
COCORAEaOangs

“e-H80 AL NS00

i

&
0
=

Using GOSUB with animation

Here is a program which PRINTs a target — two
graphics symbols on the ground — and which then
PRINTSs a succession of aliens falling from random
points at the top of the screen. If one of the aliens then
hits the target, line 240 directs the computer to go to the

subroutine at line 270. The subroutine produces a
sequence of changing BORDER colours while
BEEPing, and then replaces the target, restarting the
program. The bottom screen shows the display:

GOSUB ANIMATION PROGRAM

nao

D -
& -

3

- B

=

oD
DD
=1
D01

=
P
B =
f G866

TNZETT- T
= O
ke
o~ 0

m -~
==l

Lk T
[
me

1l

9
o |
B2

a

-iM -im
-
0

i

= 3
FCn2C
L o i

ICn
i)

@
L%]
L5
&
%]
&
&
%)

ie
11 =
i= =
13 i
i4 r
15 -
i6 I
i7 E
i_'l
L
F
L

Zo-im -m

=2 ={Mm

HT
- |
O
L
E X
L=
Sk
[
(Y=,
(=
E ¥
(] =
]
W
(] =
= &
=T
] S

W

@BZ =TT
mmanm R

XDIMmD
Tl

SO R0 MO RO B0 R G

= RO -0 Eune
ETET

0 e e

- =FTF

Mo =0 F ==

1
o

GOOGEGSCa699aG

fF=419

QUL
LK

HINTS AND TIPS

When you are learning to program your Spectrum, you
will have come across a number of ways of improving
your technique by trial and error. However, there are
some ways of saving time or sorting out problems
which, although simple and effective, are not
necessarily obvious. On these two pages you will find
some “tricks” which will help you to produce programs
that are well organized and bug-free.

Using REM as a marker or mask

Because the REM command makes the computer
ignore anything that follows it in a line, it can be used in
labelling and testing parts of a program. On page 18 you
saw how REM can be used in the first line of a program
to show you what a program does, and the longer a
program is, the more useful this becomes.

However, when a program gets really long, it is
sometimes difficult to pick out the REM lines among all
the others. One way you can draw attention to them is
by following REM with some symbols which clearly
stand out from the rest of the program. Here is one way
of doing this:

MARKER LINES WITH REM

» Tl T
B w3 Iw

N

2,15 ,249.,2
, 240,63 ,252.,93
2.7 . 148,127 . 254,

't

M MDD L
Mo ~JMsT T

J

H

9,229
2@ DATA 63,
Ldd =

198 FOR =
REHD P 9,
. WSk
UER

L =1

[H 1=

s
rmlis

[
sJ R S
QEae283

When you read through this program, the REM lines
are visible at a glance,

REM also has a use in program development. You
will often want to test a program to see what happens if
certain lines are left out. Thismay be because part of a
program takes a long time to RUN, or produces a BEEP
that you don’t want to hear time and time again.

You can skip part of a program by using GOTO or
RUN followed by a line number, but this won’t help if
you just want to miss out a few lines in the middle. The
way to deal with this problem without deleting the lines
is to insert a REM command at the beginning of each
line you want to skip. This will mask or “disable” the

lines, as the computer will ignore all the commands
following each REM. Here is a program in which this
has been done:

~LINE DISABLED WITH REM

1 BORDER 1: PARAPER
3 1,40 "B I F

e FOR ¢=-30 TO 14@ STEPF

Eo sUE B5a

STaD ¢

PRINT THRE O;c;TAB 14; (C#2/0
s TRABE 25 c+&73

=EM BEEF B.0s .40

=]

aladaipeledeads

i1
=

FRAUSE =2%
ETURM

How to check nested loops
When you use a number of loops in a program, it 1s easy
to get the loops tangled so that the program does not
produce the results you want. There 1s an easy way to
check whether the loops are correctly “nested” — or that
they fit inside each other without overlapping.

If you note the program down (or better still, if you
can print it on a printer) you can connect the start of
every loop up with its end:

LINKING LOOPS

—

FPAPER @ CLS
o 2@
=

o
nnl

PHE PHEO
L B

&

Fi

|.|| l:

M=nom

ORDDO00
~HGZ

THZDTT RO
7
Ry

_

==
)
b

'é

‘_EﬂECHHﬂﬂ
"o

=EO0-NAE0 0
GOOGLIBE0GS

Tl

T
imD
C
L:h.

I

Alternatively you can jot down every FOR and NEXT
in a program on a piece of paper in the order in which
they appear, missing out the intervening lines. It’s then
an easy process to link the loops up.

I all the loops are correctly nested, none of these lines
should overlap. If they do, you have wrongly nested
loops, and the chances are that the program will not
work correctly.

Improving keyboard feedback

Every time you press a key on the Spectrum, the
computer makes a click. It’s very useful. Without 1t,
you have to keep looking at the screen to make sure that
every key press has been registered by the computer.
However, although it is loud enough for work in quiet
surroundings, 1t can be drowned by noise from any
other source, making programming more difficult. If
the keyboard click 1sn’t loud enough, you can increase
it from a click to a more distinct BEEP by typing:

E_‘"{)KI*J 23609,n

where n 1s a whole number from 0 to 255. Zero produces
a click, 255 a long, high-pitched note.

How to speed up editing
If you want to edit a line in the middle of a long
program, you can simply type in a LIST instruction like
this:
LIST 250
This will bring the line indicator down to the line to be
edited. However, if the LISTing continues onto a
further frame, the “scroll?” prompt appears at the
bottom of the screen. If you press CAPS SHIFT and
EDIT, the program will just scroll onwards to the next
“page”. You can press N to stop the listing scrolling and
then carry on with editing, but there 1s an alternauve
that eliminates “‘scroll?” altogether.

[f you want to edit line 250 in a long program, type:

249

followed by ENTER. Nothing much seems to happen.
The line marker doesn’t move. But more importantly,
“scroll?” doesn’t appear either. If you now press CAPS
SHIFT and EDIT, line 250 then appears at the foot of
the screen ready to be edited. The 249 — or whichever
number yvou choose - should be a number which
immediately precedes the number of the line that you
want to edit. Make sure though that the number you use
1s not a line number already in the program, If it1s, then
typing the number followed by ENTER will erase the
program line from the computer’s memory.

Useful debugging techniques

Although the Spectrum has a large repertoire of error
reports which will alert you to any incorrect lines in a
program, often a program will RUN without any
hitches, only to produce a result entirely different to the
one you had in mind. How then do you go about finding
the source of the problem?

As you have just seen, you can use REMs to mask parts
of a program, or you can link loops to check that they
are nested properly. But if that doesn’t help, you can
often track down the problem by giving each variable in
a program one set value, instead of allowing it to go
through many.

Imagine that you have a graphics program which uses
the command RND to produce a display which 1s built
up by looping. If it does not work in the way you expect,
you can take out the RND, and instead use a number.,
You can then work out what effect this number should
have when the program is RUN. Now take out the lines
that start and terminate the loop (you can use REM for
this). If the result of a single RUN through 1s not what
you predicted, the display should give you some idea of
where your program is going “‘wrong’:

PROGRAM EDITED FOR TESTING

g
e

RO (AL ChDh

LRI T i mim
2R eRNDANADID

IETUVTDIDD
Moo0000000
IDERXEXZZR
=m

s 1 ODCCCCCCE
e T T T T

._._.
1l

EM LT (RHND 232
EM IMNT LRMNG =11
RO 73 +1

AT oy A

-
m
i = 7]

r
-
-4
Z

=

LET C=sIMT

M —

FRINT IBKH
REM HE=T ¥
FRUSE ©

MAEQ0EE0EHJO0 &R
SEES006C00086868

b |2 e 5 3 1

Above is the random graphics program from page 49,
edited so that the random variables in lines 110 and 120
are fixed. The original lines are still kept in, but are
disabled by REMs. The loop between lines 100 and 150
1s also disabled by a pair of REMs so the program only
PRIN'I's once.

[f the program 1s RUN, you can check whether or
not the program has done what was expected, and if
not, it is now much easier to work backwards to the
source of the problem. You can use this technique in
any program which uses variables. By substituting a
single value for each variable, you can check your
expected result with the result when the program is
RUN.

Finally, don’t forget that the BREAK key can be very
helpful in telling you how far the computer has got
through a program. If you RUN a program which either
seems to do nothing, or gets stuck at a certain point, the
BREAK key will tell you where the hold-up lies. If you
then LIST the program, you will often be able to
identify the problem with the line identified by BREAK
and correct it.

HOW TO KEEP YOUR PROGRAMS

Whatever you type into your bpi.urum 1s only stored in
the computer’s memory as long as it is supplied with
power. When you switch the computer off, your
program disappears. Obviously, you can’t type in every
program you want to use afresh each time you switch on
the computer. Fortunately, you probably already have
a means of storing programs cheaply and easily — an
ordinary tape cassette recorder. The Spectrum has two
sockets on its rear panel, labelled EAR and MIC, and
these should be connected to the corresponding
recorder sockets.

Setting the cassette controls

Having connected a recorder to the computer, the next
job is to set the volume and tone controls properly. If
there 1s a tone control, set it to maximum treble. The
volume control may need a little more experimentation.
Set the volume control midway between minimum and
maximum,

Programs are recorded on tape and loaded back into
the computer using two commands - SAVE and
LOAD. You can test these commands by trying to
SAVE any program from this book. Type the program
into the computer again. RUN it to make sure that there
are no typing errors and then unplug the EAR
connection. Now give it any filename you like and ask
the computer to SAVE it:

SAVE “FOR...NEXT”

The computer will reply with:

Start tape then press any key
Press RECORD and PLAY on the tape recorder and

then press one of the computer keys. Two types of

screen pattern will appear:

CASSETTE SCREEN DISPLAY

CASSETTE SCREEN DISPLAY

FOR. .« oM

When the program has been SAVEd, the pattern of
lines disappears and the OK prompt reappears at the
bottom of the screen. Stop the tape.

Checking a recording
To check that the program has been recorded properly,
reconnect the EAR lead and type:

VERIFY “FOR...NEXT”

Start the tape playing again. As each program recorded
on the tape is played back into the computer, the
pattern of red and blue stripes should reappear on the
screen, followed by the program’s name. If not, then
the program has not been SAVEd properly. Rewind the
tape, turn up the volume and press PLAY. If you still
cannot VERIFY the program, interrupt VERIFY by
pressing CAPS SHIFT plus BREAK. Try recording
the program again at a higher volume setting (don’t
forget to remove the EAR plug).

You can use VERIFY to catalogue all the programs
on a tape. lype VERIFY “cats” (or any other filename
that you know you have not used). As each program on
the tape i1s read by the computer, its filename will
appear on the screen.

Playing back a program
Now try LOADing the program back into memory.
Type 1n the filename like this:

LOAD “FOR...NEXT”

Make sure the tape 1s rewound, Start it playing, When
the computer finds the program, “program:” followed
by the filename will appear on the screen. When the
program is fully LOADed, the OK screen prompt
reappears. Now you can RUN the program.

T R R T S o T

S i
4

e

GRAPHICS AND CHARACTER GRIDS

The grid below shows the co-ordinates of the screen The second co-ordinate sets the vertical position
display when graphics commands are used. A point on measured from the bottom of the screen. A character
the screen is identified by two co-ordinates x,y. The PRINTed on the screen occupies an area that is 8
first co-ordinate sets the horizontal position which is graphics units wide and 8 graphic units high. You
measured along from the left-hand side of the screen. cannot PRINT on the bottom two lines of the screen.

GRAPHICS CO-ORDINATES GRID

175
168
160
152
144
136
128
120
112
104
96
B8
B0
72
i
56
48
40
32
24
16
8

{

SR e NI YRYNBEREIRARINEERENSEEARNREY
SINGLE CHARACTER GRID . 4-CHARACTER GRID
I T SR Row Row I - - TR TR T I I Row
o R AN g Totals Totals | = e 7L Totals

Character grids These grids can be used
to design either a single character (above) : [ttt
or 4 symbol made from up to four
characters (right), You can pencil in your
design on the grids and then use the blue = - g
columns to list the row totals. These are
used in a program with the commands

POKE USR. Keys A to U are free for —p=

programming user-defined characters. b

B T & [e

GLOSSARY

Entries in bold type are BASIC keywords.

AT
Used with PRINT to place characters on the screen.

BASIC

Beginners’ All-purpose Symbolic Instruction Code;
the most commonly used high-level programming
language.

BEEP

Makes the computer sound a short note or beep, whose
duration and pitch are determined by the numbers
following the command.

BIN
Converts a number written in binary into the equivalent
number written in decimal.

Bit

A binary digit — either 0 or 1.

BORDER

Changes the colour of the screen’s border area.
BRIGHT

Turns specified characters to a brighter shade of

their INK colour.,

Byte
A group of eight bits.

Chip
A single package containing a complete electronic
circuit. Also called an integrated circuit (IC).

CLS
Clears the text area of the screen,

Cru

Central Processing Unit. Normally contained in a
single chip called a microprocessor, this carries out the
computer’s arithmetic and controls operations in the
rest of the computer.

Cursor
A flashing symbol on the screen, showing where the
next character will appear.

DATA

Stores a line of data. The computer treats whatever
follows DATA as information that may be needed later
in the program. Used in conjunction with READ.

DRAW

Draws a line in the current INK colour from the
graphics origin at 0,0 or the last point visited to a point
specified.

FLLASH .
Makes characters flash on the screen.

Flowchart
A diagrammatic representation of the steps necessary
to solve a problem.,

FOR...NEXT
A loop which repeats a sequence of program statements
a specified number of times.

GOSUB

Makes the program jump to a subroutine beginning at
the line number following the command. The
subroutine must always be terminated by RETURN.

GOTO
Makes a program jump to the line number following
the command.

Hardware
The physical machinery of a computer system, as
distinct from the programs (software).

IF... THEN
Prompts the computer to take a particular course of
action only if the condition specified is detected.

INK .

Changes the colour of text and graphics that appear on

the screen.,
L1

INPUT

Instructs the computer to wait for some data from the

keyboard which is then used 1n a program,

INT
Converts a number with a decimal fraction into a whole
number.

Interface
The hardware and software connection between a
computer and another piece of equipment.

INVERSE
Switches the PAPER colour for the INK colour and
vice versd.

K

Abbreviation of kilobyte (1024 bytes).

LET

Assigns a value to a variable.

LIST
Makes the computer display the program currently in
its memory,

LOAD
Transfers a program from a cassette tape into the
computer’s memory.

Loop
A sequence of program statements which is executed
repeatedly or until a specified condition is met.

NEW
Removes a program from the computer’s memory so
that a new program can be keyed in.

OVER

Allows new characters to be PRINTed on top of
existing characters without erasing the existing
characters.

PAPER
Changes the screen’s background colour.

PAUSE

Halts a program for a period set by a number measured
in fiftieths of a second.

PLOT

Makes a single dot appear on the screen at the pnmr
specified by the co-ordinates that follow it.

POKE USR

Stores a number that reprograms a key to produce a
user-defined character,

PRINT

Makes whatever follows appear on the screen.

RAM

Random Access Memory (volatile memory). A memory
whose contents are erased when the power is switched

off. See also ROM.

READ

Instructs the computer to take a specific number of
items from a DATA statement so that they can be used
in a program,

REM

Enables the programmer to add remarks to a program.

The computer ignores whatever follows REM in a
program statement,

L R e o (R

RESTORE
Resets the point from which DATA items are READ,
so that items can be used more than once in a program.

RETURN
Terminates a subroutine. (See also GOSUB),

RND :
Produces numbers between 0 and 1 at random which
can be used to produce unpredictable sequences.

ROM

Read Only Memory (non-volatile memory). A memory
which is programmed permanently by the
manufacturer and whose contents can only be read by
the user’s computer,

SAVE

Records a program currently in the computer’s memory
onto a tape cassette. The program is identified by a
filename,

Software
Computer programs.

SQR
Produces the square root of the number that follows it.

STEP
Sets the step size in a FOR...NEXT loop.

STOP
Halts a program and PRINTS out the line number in
which it appears.

String
A sequence of characters treated as a single item —
someone’s name, for instance,

Subroutine

A part of a program that can be called when necessary,
to produce a particular display or carry out a number of
calculations repeatedly for example.

TAB
Used with PRIN'T to specify how far along a line
characters are to appear.

Variable

A labelled slot in the computer’s memory in which
information can be stored and retrieved later in a
program.

VERIFY
Checks that a program that is currently in memory has
been recorded correctly on a tape cassette using SAVE.

Main entries are in
bold type

Animation 32-3, 36-9,
54-5, 57

Arrow keys 16-7, 22

AT 15, 25, 62

BASIC 6, 18, 22, 28, 62

BEEP 10, 42-5, 62

Binary code/BIN 8, 53,
62

Bit 8, 62

BORDER 10, 34-7, 62

BREAK 11,23, 26, 59,
60

BRIGHT 39, 62

Bug see Debugging

Byte 8, 62

Cable 12,13
CAPS SHIFT key 10—
11, 29, 59, 60
Cassette tape recorder 6,
7,9,13, 60, 63
Character 6, 10-11, 15,
40-1, 62, 63
— graphics 52-3
— grids 30-1, 52-3, 61
— user-defined 31-3,
35, 37, 52, 54, 61
Chip 8-9, 62
Circuit board 6, 8-9
Clock, internal 8
CLS 14, 34, 62
Colour 6, 12-3, 34-9,
54-5, 62
— keys 10-11
Connecting up 6-7,
12-13, 60
Connectors 6-7, 8, 13
CPU (Central Processing
Unit) 8-9, 62
Cursor 11, 22, 29, 37,
38, 62

DATA 50-1, 52-3, 54,
62,63

Debugging 18, 22-3,
56, 58-9

DELETE 11, 22

DRAW 28-9, 38-9, 47,
54-5, 62

|

E (Exponent) 16-17, 48

EDIT 10, 22, 59

ENTER 10, 11, 12, 14,
18, 22-3

Error message 17, 23,

59

Fields 15

Filename 60, 63

FILASH 40-1, 63

Flowchart 19, 62

FOR ... NEXT 26-7,
33, 44, 46, 52-3, 538,
62,63

GOSUB 56-7, 62
GOTO 21, 26, 44, 56,
58, 62
Graphics 10, 23, 28-33,
36-9, 47, 49, 54-5, 61,
62
— characters 29, 30-31,
41, 54, 61
— grid 28, 30-1, 38-9,
52-3, 61
— key 10-11

Hardware 6-13, 60, 62

IF ... THEN 46-7, 62

INK 10, 34-5, 38, 40—
1,49, 54-5, 62

INPUT 23, 24-5, 27,62

INT 27, 48, 62

Interfacing 6-7, 13, 60,
62

INVERSE 38-9, 62

Joystick 6, 7

K (Kilobytes) 6, 8, 62
Keyboard 6-7, 8, 10-11,
23,59

LET 15, 63

Line-numbering 18-19,
22

LIST 20, 59, 63

LOAD 23, 60, 63

Loops 19, 26-7, 44-5,
46, 52-3, 56-7, 58-9,
62,63

Loudspeaker 6,9, 12

Machine code 8

Mathematical symbols
15, 16, 46-7

Memory 6, 8-9, 18, 20,
23, 56, 60, 63

Menu 57

Microdrives 6,7, 13

Modes 10, 11

Modules 36, 56

NEW 8§, 21, 63
Number keys 10-11, 45
Numbers see Variable

OVER 38-9, 63

PAL encoder 8

PAPER 10-11, 34-5,
3641, 55, 62, 63

PAUSE 27,33, 63

Peripherals 6-7, 13

Perspective 54

Pixels 28

PLAY 60

PLOT 28-9, 38-9, 54,
63

POKE 59

POKE USR 30-1, 37,
61, 63

Power supply 6,8,9, 12,
13,18

PRINT 10, 14, 16, 18-
19, 23, 31, 34, 38, 40,
62,63

Printer 6, 7, 13, 58

Punctutation 15, 17, 19,
]

READ 37, 50-1, 52, 62,
63

RECORD 60

REM 18, 58, 59, 63

RESTORE 51, 63

RETURN 56-7, 62, 63

RND 45, 46, 48-9, 59,
63

RUN 18-19, 21, 23, 58,
59, 63

SAVE 60, 63

Scroll 21, 23, 36, 59

Setting-up 12-13, 60

Socket 6,7, 9, 60

Software 63

Sound 6, 8, 10, 12, 42-5,
59, 62

INDEX

SPACE 11, 23

Speed 27, 33, 42-3, 56

SQR (Square root) 16—
i b (6

STEP 63

STOP 23, 63

String see Variable

Subroutine 56-7, 62, 63

SYMBOL SHIFT key
10-11

TAB 15, 63

Time delay 33, 45

Tuning-in 12, 35, 60

TV receiver 6-7, 12, 13,
35

Variable 14-15, 19, 23,
24-5, 50-51, 59, 63

VERIFY 60, 63

Video monitor 12-13

Gpen i

R

ROGRAMMING SERIES

	Cover

	Contents

	The ZX Spectrum

	Connectors and peripherals

	Inside the Computer

	Main board components

	The Spectrum Keyboard

	Keyboard technique

	Understanding the cursor

	Setting Up

	How to test the Spectrum's colours

	Connecting peripherals

	Using the Screen

	Starting to PRINT

	What is a variable?

	How to use strings

	Positioning type with TAB and AT

	Computer Calculations

	Exponents and square roots

	Getting the order right

	Knowing your limitations

	Writing Your First Program

	From commands to lines

	How to correct mistakes

	Why punctuation is important

	How to write a flowchart

	Displaying Your Programs

	Moving around a LIST

	How to enter a new program

	RUNning a program segment

	Correcting Mistakes

	Editing on the screen

	First steps in bug-hunting

	Computer Conversations

	Questions from your computer

	Programming multiple INPUTs

	Using INPUT with numbers

	Writing Program Loops

	How to stop a loop

	Slowing a loop down

	How to round numbers off

	The Electronic Drawing-Board

	How to draw lines

	Picking a starting point

	How to fill in shapes

	DRAWing a simple landscape

	Designing Your Own Characters

	How to use a character grid

	How to add characters together

	Screen patterns with POKE USR

	Animation

	How to remove after-images and control speed

	Movement up and down the screen

	Introducing Colour

	Using colour commands

	Changing INK, PAPER and BORDER

	Improving the picture

	Colouring user-defined characters

	Colour Graphics

	Programming graphics colour

	Animated action in colour

	Special Screen Techniques 1

	UnDRAWing and overPRINTing

	OverPRINTing with graphics

	How to BRIGHTen up your displays

	Special Screen Techniques 2

	How to turn flashing on and off

	"Transparent" colour and contrast

	Overprinting without erasing

	Sound, Notes and Music

	Measuring the Spectrum's speed with sound

	Programming simple tunes

	Music on the Spectrum

	Special Effects With Sound

	Writing sound loops

	Altering the duration of a sound loop

	Unpredictable sounds

	Synchronized sound effects

	Decision-Point Programming

	Why use the IF...THEN loop?

	Creating graphics with IF...THEN

	Selecting the right condition

	Unpredictable Programs

	Producing random whole numbers

	Checking a random sequence

	Using RND in graphics programs

	Compiling a Data Bank

	Storing numbers and strings together

	Quick Ways to Store Characters

	Programming characters with READ...DATA

	Storing groups of characters

	How to use binary numbers with graphics

	Advanced Colour Graphics

	Creating a landscape

	Programming colour and perspective

	DRAWing lines on colour

	Adding a moving character

	Writing Subroutines

	How to use a subroutine

	Setting up displays with GOSUB

	Using GOSUB with animation

	Hints And Tips

	Using REM as a marker or mask

	How to check nested loops

	Improving keyboard feedback

	How to speed up editing

	Useful debugging techniques

	How to Keep Your Programs

	Setting the cassette controls

	Checking a recording

	Playing back a program

	Graphics and Character Grids

	Glossary

	Index

	Back Cover

